首页> 外文期刊>The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical >Numerical Simulations of Complex Nonsymmetrical 3D Systems for Scanning Electrochemical Microscopy Using the Boundary Element Method
【24h】

Numerical Simulations of Complex Nonsymmetrical 3D Systems for Scanning Electrochemical Microscopy Using the Boundary Element Method

机译:复杂非对称3D扫描电化学显微镜系统的边界元数值模拟

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Quantitative treatment of the problems related to scanning electrochemical microscopy (SECM) is performed by means of numerical simulations using the boundary element method (BEM). The method is used to calculate the amperometric steady-state response of a microelectrode or nanoelectrode of a given arbitrary geometry in the SECM feedback mode above surfaces with ideal negative feedback or diffusion-controlled positive feedback. By changing the problem setup from the interior to the exterior Laplace formalism, the precision of the calculation could be improved significantly because the exterior formulation does not require any assumptions about the extension of the diffusion layer at infinite time. The improved precision was demonstrated by simulations of standard problems that have been treated before by finite difference methods. Subsequently a series of simulations is presented that explores the effects of deviations from idealized SECM geometries used in many available finite difference simulations. Such deviations from ideal geometries are frequently encountered in routine SECM experiments and exert a varying influence of the precision of the obtained data and derived physicochemical parameters. Because of the speed of calculation and the flexibility of the geometric arrangement, entire SECM line scans were simulated and used to analyze some issues of recently introduced SECM instruments with integrated distance control mechanisms.
机译:通过使用边界元法(BEM)的数值模拟,对与扫描电化学显微镜(SECM)相关的问题进行定量处理。该方法用于计算具有理想负反馈或扩散控制正反馈的表面上方SECM反馈模式下给定任意几何形状的微电极或纳米电极的安培稳态响应。通过将问题的设置从内部拉普拉斯形式更改为外部拉普拉斯形式,可以显着提高计算的精度,因为外部公式不需要在无限时间内扩展扩散层的任何假设。通过模拟以前通过有限差分方法处理过的标准问题,可以证明提高了精度。随后,提出了一系列模拟,探索了许多可用的有限差分模拟中使用的理想SECM几何形状的偏差影响。在常规的SECM实验中经常会遇到这种与理想几何形状的偏差,并且对获得的数据和衍生的理化参数的精度产生不同的影响。由于计算速度快和几何布置的灵活性,因此对整个SECM线扫描进行了仿真,并用于分析最近推出的具有集成距离控制机制的SECM仪器的一些问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号