...
首页> 外文期刊>The journal of physical chemistry, A. Molecules, spectroscopy, kinetics, environment, & general theory >Bond Energies and Bonding Interactions in Fe(CO)_(5-n)(N_2)_n (n=0-5) and Cr(CO)_(6-n)(N_2)_n (n=0-6) Complexes: Density Functional Theory Calculations and Comparisons to Experimental Data
【24h】

Bond Energies and Bonding Interactions in Fe(CO)_(5-n)(N_2)_n (n=0-5) and Cr(CO)_(6-n)(N_2)_n (n=0-6) Complexes: Density Functional Theory Calculations and Comparisons to Experimental Data

机译:Fe(CO)_(5-n)(N_2)_n(n = 0-5)和Cr(CO)_(6-n)(N_2)_n(n = 0-6)配合物中的键能和键相互作用:密度泛函理论的计算和与实验数据的比较

获取原文
获取原文并翻译 | 示例
           

摘要

Metal-N_2 bond energies have been calculated for the Fe(CO)s-n(Nz)n (n = 1-5) and Cr(CO)6-n(N2)n (n = 1-6) complexes using density-functional theory (DFr). Bond enthalpies calculated using the gradient corrected BP86 functional are in good agreement with the available experimental data. An energy decomposition procedure and a population analysis were perfonned for all of the complexes to quantitatively characterize the interactions of N2 and CO with the relevant coordinatively unsaturated metal species. In all cases, the metal-N2 bond is weaker than the metal-CO bond because CO is both a better donor and a better acceptor of electron density. Calculated bond energies for Cr- N2 bonds for the lowest energy isomers of the chromium complexes are 24,23,22,21,20, and 25 kcal/mol for n = 1-6, respectively. The trend of decreasing bond energy with added N2 ligands is a result of weaker orbital interactions. The exception is Cr(Nz)6, which is predicted to be more stable than the CO containing complexes. This increase in stability is ascribed to the absence of a CO trans effect. In contrast, the Fe-N2 bond energies for the lowest energy isomers in the series are 24,17,14,10, and 5 kcal/mol for n = 1-5, respectively. Although iron has a larger orbital interaction with dinitrogen ligands than chromium, the 16-electron iron complexes have to defonn substantially when going from their ground triplet states to their final pentacoordinated singlet geometries. An energy cost that increases as the number of N2 ligands increases is associated with this deformation. For chromium complexes, this defonnation tenn does not significantly decrease the bond energy, but the magnitude of this tenn becomes the dominant factor in the differences in bond energies in the dinitrogenated iron complexes.
机译:已经使用密度泛函计算了Fe(CO)sn(Nz)n(n = 1-5)和Cr(CO)6-n(N2)n(n = 1-6)配合物的金属-N_2键能理论(DFr)。使用梯度校正的BP86函数计算的键焓与可用的实验数据高度吻合。对所有配合物进行了能量分解程序和总体分析,以定量表征N2和CO与相关配位不饱和金属物质的相互作用。在所有情况下,金属-N 2键均比金属-CO键弱,因为CO既是电子密度的较好供体,也是电子密度的较好受体。对于铬络合物的最低能量异构体,Cr-N2键的计算键能分别为24、23、22、21、20和25 kcal / mol(n = 1-6)。添加N2配体会降低键能,这是较弱的轨道相互作用的结果。 Cr(Nz)6是例外,它比含CO的配合物更稳定。稳定性的增加归因于不存在CO反式作用。相反,对于n = 1-5的最低能级异构体,Fe-N2键能分别为24、17、14、10和5 kcal / mol。尽管铁与二氮配体的轨道相互作用比铬大,但16电子铁配合物从基态三重态转变为最终的五配位单线态时,必须进行显着修饰。随着N 2配体数量的增加而增加的能量成本与此变形相关。对于铬络合物,这种脱硝态不会显着降低键能,但该态的大小成为二氮化铁络合物键能差异的主要因素。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号