首页> 外文期刊>The ISME journal emultidisciplinary journal of microbial ecology >Metagenomic resolution of microbial functions in deep-sea hydrothermal plumes across the Eastern Lau Spreading Center
【24h】

Metagenomic resolution of microbial functions in deep-sea hydrothermal plumes across the Eastern Lau Spreading Center

机译:整个东劳氏传播中心深海热液羽流中微生物功能的元基因组解析

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Microbial processes within deep-sea hydrothermal plumes affect ocean biogeochemistry on global scales. In rising hydrothermal plumes, a combination of microbial metabolism and particle formation processes initiate the transformation of reduced chemicals like hydrogen sulfide, hydrogen, methane, iron, manganese and ammonia that are abundant in hydrothermal vent fluids. Despite the biogeochemical importance of this rising portion of plumes, it is understudied in comparison to neutrally buoyant plumes. Here we use metagenomics and bioenergetic modeling to describe the abundance and genetic potential of microorganisms in relation to available electron donors in five different hydrothermal plumes and three associated background deep-sea waters from the Eastern Lau Spreading Center located in the Western Pacific Ocean. Three hundred and thirty one distinct genomic 'bins' were identified, comprising an estimated 951 genomes of archaea, bacteria, eukarya and viruses. A significant proportion of these genomes is from novel microorganisms and thus reveals insights into the energy metabolism of heretofore unknown microbial groups. Community-wide analyses of genes encoding enzymes that oxidize inorganic energy sources showed that sulfur oxidation was the most abundant and diverse chemolithotrophic microbial metabolism in the community. Genes for sulfur oxidation were commonly present in genomic bins that also contained genes for oxidation of hydrogen and methane, suggesting metabolic versatility in these microbial groups. The relative diversity and abundance of genes encoding hydrogen oxidation was moderate, whereas that of genes for methane and ammonia oxidation was low in comparison to sulfur oxidation. Bioenergetic-thermodynamic modeling supports the metagenomic analyses, showing that oxidation of elemental sulfur with oxygen is the most dominant catabolic reaction in the hydrothermal plumes. We conclude that the energy metabolism of microbial communities inhabiting rising hydrothermal plumes is dictated by the underlying plume chemistry, with a dominant role for sulfur-based chemolithoautotrophy.
机译:深海热液羽流中的微生物过程在全球范围内影响海洋生物地球化学。在上升的热液羽流中,微生物代谢和颗粒形成过程的结合引发了热液排放液中大量还原的化学物质的转化,例如硫化氢,氢,甲烷,铁,锰和氨。尽管上升的羽流部分具有生物地球化学的重要性,但与中性浮力羽流相比,它的研究仍不足。在这里,我们使用宏基因组学和生物能模型来描述与来自西太平洋东部劳氏扩散中心的五个不同的热液羽流和三个相关的背景深水中的可用电子供体相关的微生物的丰度和遗传潜力。鉴定出了313个不同的基因组“箱”,包括估计的951个古细菌,细菌,真核生物和病毒的基因组。这些基因组的很大一部分来自新型微生物,因此揭示了对迄今未知微生物群能量代谢的见解。社区范围内对编码可氧化无机能源的酶的基因进行的分析表明,硫氧化是社区中化学营养最丰富的微生物代谢,种类最多。硫氧化的基因通常存在于基因组箱中,该箱也包含氢和甲烷氧化的基因,表明这些微生物组的代谢用途广泛。编码氢氧化的基因的相对多样性和丰度中等,而与硫氧化相比,甲烷和氨氧化的基因的相对多样性和丰度低。生物能热力学模型支持宏基因组学分析,表明元素硫被氧氧化是热液羽流中最主要的分解代谢反应。我们得出的结论是,居住在不断上升的热液羽流中的微生物群落的能量代谢由潜在的羽流化学决定,而硫基化学自养植物具有主导作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号