...
首页> 外文期刊>The ISME journal emultidisciplinary journal of microbial ecology >Genomic and metagenomic surveys of hydrogenase distribution indicate H-2 is a widely utilised energy source for microbial growth and survival
【24h】

Genomic and metagenomic surveys of hydrogenase distribution indicate H-2 is a widely utilised energy source for microbial growth and survival

机译:氢化酶分布的基因组和宏基因组学调查表明,H-2是微生物生长和存活所广泛使用的能源

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Recent physiological and ecological studies have challenged the long-held belief that microbial metabolism of molecular hydrogen (H-2) is a niche process. To gain a broader insight into the importance of microbial H-2 metabolism, we comprehensively surveyed the genomic and metagenomic distribution of hydrogenases, the reversible enzymes that catalyse the oxidation and evolution of H-2. The protein sequences of 3286 non-redundant putative hydrogenases were curated from publicly available databases. These metalloenzymes were classified into multiple groups based on (1) amino acid sequence phylogeny, (2) metal-binding motifs, (3) predicted genetic organisation and (4) reported biochemical characteristics. Four groups (22 subgroups) of [NiFe]-hydrogenase, three groups (6 subtypes) of [FeFe]-hydrogenases and a small group of [Fe]-hydrogenases were identified. We predict that this hydrogenase diversity supports H-2-based respiration, fermentation and carbon fixation processes in both oxic and anoxic environments, in addition to various H-2-sensing, electron-bifurcation and energy-conversion mechanisms. Hydrogenase-encoding genes were identified in 51 bacterial and archaeal phyla, suggesting strong pressure for both vertical and lateral acquisition. Furthermore, hydrogenase genes could be recovered from diverse terrestrial, aquatic and host-associated metagenomes in varying proportions, indicating a broad ecological distribution and utilisation. Oxygen content (pO(2)) appears to be a central factor driving the phylum- and ecosystem-level distribution of these genes. In addition to compounding evidence that H-2 was the first electron donor for life, our analysis suggests that the great diversification of hydrogenases has enabled H-2 metabolism to sustain the growth or survival of microorganisms in a wide range of ecosystems to the present day. This work also provides a comprehensive expanded system for classifying hydrogenases and identifies new prospects for investigating H-2 metabolism.
机译:最近的生理学和生态学研究挑战了人们一直以来认为的分子氢(H-2)的微生物代谢是一个利基过程的观点。为了更深入地了解微生物H-2代谢的重要性,我们全面研究了氢化酶的基因组和宏基因组分布,氢化酶是催化H-2氧化和进化的可逆酶。 3286个非冗余推定氢化酶的蛋白质序列来自可公开获得的数据库。根据(1)氨基酸序列系统发育,(2)金属结合基序,(3)预测的遗传组织和(4)报告的生化特征,将这些金属酶分为多个组。鉴定出四组(22个亚组)的[NiFe]氢化酶,三组(6个亚型)的[FeFe]氢化酶和一小组[Fe]氢化酶。我们预测,这种加氢酶多样性还支持在有氧和无氧环境中基于H-2的呼吸,发酵和碳固定过程,以及各种H-2-传感,电子分叉和能量转换机制。在51个细菌和古细菌门中鉴定出了加氢酶编码基因,这表明垂直和横向采集均具有强大的压力。此外,可以从不同的陆地,水生和宿主相关的元基因组中以不同的比例回收氢化酶基因,表明其广泛的生态分布和利用。氧含量(pO(2))似乎是驱动这些基因的系统发育和生态系统水平分布的重要因素。除了有证据表明H-2是生命中第一个电子供体外,我们的分析还表明,氢化酶的巨大多样化使H-2代谢能够维持微生物在各种生态系统中的生长或存活。 。这项工作还提供了一个全面的扩展系统,用于对氢化酶进行分类,并确定了研究H-2代谢的新前景。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号