首页> 外文期刊>The ISME journal emultidisciplinary journal of microbial ecology >Molecular and biogeochemical evidence for methane cycling beneath the western margin of the Greenland Ice Sheet
【24h】

Molecular and biogeochemical evidence for methane cycling beneath the western margin of the Greenland Ice Sheet

机译:格陵兰冰盖西缘下甲烷循环的分子和生物地球化学证据

获取原文
获取原文并翻译 | 示例
       

摘要

Microbial processes that mineralize organic carbon and enhance solute production at the bed of polar ice sheets could be of a magnitude sufficient to affect global elemental cycles. To investigate the biogeochemistry of a polar subglacial microbial ecosystem, we analyzed water discharged during the summer of 2012 and 2013 from Russell Glacier, a land-terminating outlet glacier at the western margin of the Greenland Ice Sheet. The molecular data implied that the most abundant and active component of the subglacial microbial community at these marginal locations were bacteria within the order Methylococcales (59-100% of reverse transcribed (RT)-rRNA sequences). mRNA transcripts of the particulate methane monooxygenase (pmoA) from these taxa were also detected, confirming that methanotrophic bacteria were functional members of this subglacial ecosystem. Dissolved methane ranged between 2.7 and 83 μM in the subglacial waters analyzed, and the concentration was inversely correlated with dissolved oxygen while positively correlated with electrical conductivity. Subglacial microbial methane production was supported by δ~(13)C-CH_4 values between -64% and -62% together with the recovery of RT-rRNA sequences that classified within the Methanosarcinales and Methanomicrobiales. Under aerobic conditions, >98% of the methane in the subglacial water was consumed over ~30 days incubation at ~4 °C and rates of methane oxidation were estimated at 0.32 μM per day. Our results support the occurrence of active methane cycling beneath this region of the Greenland Ice Sheet, where microbial communities poised in oxygenated subglacial drainage channels could serve as significant methane sinks.
机译:在极地冰原层使有机碳矿化并增加溶质产生的微生物过程可能足以影响整体元素循环。为了研究极地冰川下微生物生态系统的生物地球化学,我们分析了2012年夏季和2013年夏季从格陵兰冰原西缘的陆地终止出口冰川Russell冰川排出的水。分子数据表明,在这些边缘位置,冰川下微生物群落中最丰富,最活跃的成分是甲基球菌菌纲内的细菌(逆转录(RT)-rRNA序列的59-100%)。还检测到了来自这些类群的颗粒甲烷单加氧酶(pmoA)的mRNA转录本,证实了甲烷营养细菌是该冰川下生态系统的功能成员。在所分析的冰川下水体中,溶解的甲烷介于2.7和83μM之间,并且浓度与溶解的氧呈负相关,而与电导率呈正相关。冰河下微生物甲烷的产生受δ〜(13)C-CH_4值介于-64%和-62%之间的支持,同时还回收了归类于甲烷甲烷藻和甲烷微生物中的RT-rRNA序列。在有氧条件下,在〜4°C下孵育约30天后,冰川下水中的甲烷中98%以上的甲烷被消耗掉,甲烷氧化速率估计为每天0.32μM。我们的研究结果支持了格陵兰冰原这一区域下甲烷的活跃循环,在该区域中,沉积在含氧冰河下排水通道中的微生物群落可能是重要的甲烷汇。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号