...
首页> 外文期刊>The Journal of Neuroscience: The Official Journal of the Society for Neuroscience >Mechanisms of calcium decay kinetics in hippocampal spines: role of spine calcium pumps and calcium diffusion through the spine neck in biochemical compartmentalization.
【24h】

Mechanisms of calcium decay kinetics in hippocampal spines: role of spine calcium pumps and calcium diffusion through the spine neck in biochemical compartmentalization.

机译:海马棘中钙衰变动力学的机制:脊柱钙泵的作用和钙在生化分隔中通过脊柱颈部扩散的作用。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Dendritic spines receive most excitatory inputs in the CNS and compartmentalize calcium. Although the mechanisms of calcium influx into spines have been explored, it is unknown what determines the calcium decay kinetics in spines. With two-photon microscopy we investigate action potential-induced calcium dynamics in spines from rat CA1 pyramidal neurons in slices. The [Ca(2+)](i) in most spines shows two decay kinetics: an initial fast component, during which [Ca(2+)](i) in spines decays to dendritic levels, followed by a slower decay phase in which the spine follows dendritic kinetics. The correlation between [Ca(2+)](i) in spine and dendrite at the breakpoint of the decay kinetics demonstrates diffusional equilibration between spine and dendrite during the slower component. To explain the faster initial decay, we rule out saturation or kinetic effects of endogenous or exogenous buffers and focus instead on (1) active calcium extrusion and (2) buffered diffusion of calcium from spine to dendrite. The presence of an undershoot in most spines indicates that extrusion mechanisms can be intrinsic to the spine. Supporting the two mechanisms, pharmacological blockade of smooth endoplasmic reticulum calcium (SERCA) pumps and the length of the spine neck affect spine decay kinetics. Using a mathematical model, we find that the contribution of calcium pumps and diffusion varies from spine to spine. We conclude that dendritic spines have calcium pumps and that their density and kinetics, together with the morphology of the spine neck, determine the time during which the spine compartmentalizes calcium.
机译:树突棘在中枢神经系统中接受大多数兴奋性输入,并分隔钙。尽管已经研究了钙流入刺中的机制,但尚不清楚决定钙在钙中的动力学的因素。用双光子显微镜,我们研究了大鼠CA1锥体神经元切片中棘的动作电位诱导的钙动力学。在大多数棘刺中的[Ca(2 +)](i)表现出两个衰变动力学:初始快速分量,在此期间,棘突中的[Ca(2 +)](i)衰变到树突状水平,随后是一个较慢的衰变阶段脊柱遵循树突动力学。在衰减动力学的断点处,脊柱中的[Ca(2 +)](i)与枝晶之间的相关性表明,在较慢的分量过程中,脊柱与枝晶之间的扩散平衡。为了解释更快的初始衰减,我们排除了内源性或外源性缓冲剂的饱和或动力学作用,而是着重于(1)主动钙挤出和(2)钙从脊柱到树突的缓冲扩散。大多数脊柱都存在下冲,表明挤压机制可能是脊柱固有的。支持这两种机制,平滑内质网钙(SERCA)泵的药理学阻断和脊柱颈的长度会影响脊柱衰变动力学。使用数学模型,我们发现钙泵和扩散的贡献因脊柱而异。我们得出的结论是,树突棘具有钙泵,它们的密度和动力学以及脊柱颈部的形态决定了脊柱分隔钙的时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号