...
首页> 外文期刊>The Journal of Neuroscience: The Official Journal of the Society for Neuroscience >Angular path integration by moving 'hill of activity': a spiking neuron model without recurrent excitation of the head-direction system.
【24h】

Angular path integration by moving 'hill of activity': a spiking neuron model without recurrent excitation of the head-direction system.

机译:通过移动“活动坡度”进行角路径整合:尖峰神经元模型,无需反复激发头部方向系统。

获取原文
获取原文并翻译 | 示例
           

摘要

During spatial navigation, the head orientation of an animal is encoded internally by neural persistent activity in the head-direction (HD) system. In computational models, such a bell-shaped "hill of activity" is commonly assumed to be generated by recurrent excitation in a continuous attractor network. Recent experimental evidence, however, indicates that HD signal in rodents originates in a reciprocal loop between the lateral mammillary nucleus (LMN) and the dorsal tegmental nucleus (DTN), which is characterized by a paucity of local excitatory axonal collaterals. Moreover, when the animal turns its head to a new direction, the heading information is updated by a time integration of angular head velocity (AHV) signals; the underlying mechanism remains unresolved. To investigate these issues, we built and investigated an LMN-DTN network model that consists of three populations of noisy and spiking neurons coupled by biophysically realistic synapses. We found that a combination of uniform external excitation and recurrent cross-inhibition can give rise to direction-selective persistent activity. The model reproduces the experimentally observed three types of HD tuning curves differentially modulated by AHV and anticipatory firing activity in LMN HD cells. Time integration is assessed by using constant or sinusoidal angular velocity stimuli, as well as naturalistic AHV inputs (from rodent recordings). Furthermore, the internal representation of head direction is shown to be calibrated or reset by strong external cues. We identify microcircuit properties that determine the ability of our model network to subserve time integration function.
机译:在空间导航期间,动物的头部方向是通过头部(HD)系统中的神经持续活动在内部进行编码的。在计算模型中,通常将这种钟形的“活动坡度”假定为通过连续吸引网络中的反复激励生成。然而,最近的实验证据表明,啮齿动物中的高清信号起源于外侧乳突核(LMN)与背侧被膜核(DTN)之间的相互循环,其特征是缺乏局部兴奋性轴突侧支。此外,当动物的头转向新方向时,通过角头速度(AHV)信号的时间积分来更新方向信息。根本的机制仍未解决。为了研究这些问题,我们建立并研究了一个LMN-DTN网络模型,该模型由三个嘈杂的神经元和尖峰神经元组成,并结合了生物物理上的现实突触。我们发现,均匀的外部激发和循环交叉抑制的结合可以产生方向选择性的持久性活性。该模型重现了实验观察到的三种类型的高清调谐曲线,这些曲线由AHV和LMN HD细胞的预期发射活性差分调制。通过使用恒定或正弦角速度刺激以及自然的AHV输入(来自啮齿动物记录)来评估时间积分。此外,头部方向的内部表示已通过强大的外部提示进行了校准或重置。我们确定微电路特性,这些特性决定了模型网络支持时间积分功能的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号