首页> 外文期刊>Chemistry of Materials: A Publication of the American Chemistry Society >Tuning the Stability of Organic Active Materials for Nonaqueous Redox Flow Batteries via Reversible, Electrochemically Mediated Li+ Coordination
【24h】

Tuning the Stability of Organic Active Materials for Nonaqueous Redox Flow Batteries via Reversible, Electrochemically Mediated Li+ Coordination

机译:通过可逆的,电化学介导的Li +配位调节非水氧化还原液流电池的有机活性材料的稳定性

获取原文
获取原文并翻译 | 示例
           

摘要

We describe an electrochemically mediated interaction between Li+ and a promising active material for nonaqueous redox flow batteries (RFBs), 1,2,3,4-tetrahydro-6,7-dimethoxy-1,1,4,4-tetramethylnaphthalene (TDT), and the impact of this structural interaction on material stability during voltammetric cycling. TDT could be an advantageous organic positive electrolyte material for nonaqueous RFBs due to its high oxidation potential, 4.21 V vs Li/Li+, and solubility of at least 1.0 M in select electrolytes. Although results from voltammetry suggest TDT displays Nernstian reversibility in many nonaqueous electrolyte solutions, bulk electrolysis reveals significant degradation in all electrolytes studied, the extent of which depends on the electrolyte solution composition. Results of subtractively normalized in situ Fourier transform infrared spectroscopy (SNIFTIRS) confirm that TDT undergoes reversible structural changes during cyclic voltammetry in propylene carbonate and 1,2-dimethoxyethane solutions containing Li+ electrolytes, but irreversible degradation occurs when tetrabutylammonium (TBA(+)) replaces Li+ as the electrolyte cation in these solutions. By combining the results from SNIFTIRS experiments with calculations from density functional theory, solution-phase active species structure and potential-dependent interactions can be determined. We find that Li+ coordinates to the Lewis basic methoxy groups of neutral TDT and, upon electrochemical oxidation, this complex dissociates into the radical cation TDT and Lit The improved cycling stability in the presence of Li+ relative to TBA(+) suggests that the structural interaction reported herein may be advantageous to the design of energy storage materials based on organic molecules.
机译:我们描述了Li +和非水氧化还原液流电池(RFB),1,2,3,4-四氢-6,7-二甲氧基-1,1,4,4-四甲基萘(TDT)的有希望的活性材料之间的电化学介导的相互作用,以及这种结构相互作用对伏安循环中材料稳定性的影响。 TDT可能是非水RFB的一种有利的有机正电解质材料,因为它的高氧化电位(相对于Li / Li +为4.21 V)和在某些电解质中的溶解度至少为1.0M。尽管伏安法的结果表明TDT在许多非水电解质溶液中都显示出Nernstian可逆性,但本体电解显示出所有研究的电解质都有明显的降解,其降解程度取决于电解质溶液的组成。减去归一化原位傅里叶变换红外光谱(SNIFTIRS)的结果证实,在碳酸亚丙酯和含Li +电解质的1,2-二甲氧基乙烷溶液中,循环伏安法中TDT发生可逆结构变化,但是当四丁基铵(TBA(+))替代时,TDT发生不可逆降解。 Li +作为这些溶液中的电解质阳离子。通过将SNIFTIRS实验的结果与密度泛函理论的计算相结合,可以确定溶液相活性物质的结构和电位依赖性相互作用。我们发现Li +配位至中性TDT的Lewis碱性甲氧基,并且在电化学氧化后,该络合物解离成TDT和Lit阳离子。在Li +相对于TBA(+)的存在下改善的循环稳定性表明结构相互作用本文所公开的文献对于基于有机分子的储能材料的设计可能是有利的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号