...
首页> 外文期刊>Chemistry of Materials: A Publication of the American Chemistry Society >Galvanic Replacement onto Complex Metal-Oxide Nanoparticles: Impact of Water or Other Oxidizers in the Formation of either Fully Dense Onion-like or Multicomponent Hollow MnOx/FeOx Structures
【24h】

Galvanic Replacement onto Complex Metal-Oxide Nanoparticles: Impact of Water or Other Oxidizers in the Formation of either Fully Dense Onion-like or Multicomponent Hollow MnOx/FeOx Structures

机译:在复杂的金属氧化物纳米颗粒上进行电流置换:水或其他氧化剂对完全稠密洋葱状或多组分空心MnOx / FeOx结构形成的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Multicomponent metal-oxide nanoparticles are appealing structures from applied and fundamental viewpoints. The control on the synthetic parameters in colloidal chemistry allows the growth of complex nanostructures with novel morphologies. In particular, the synthesis of biphase metal-oxide hollow nanoparticles has been reported based on galvanic replacement using an organic-based seeded-growth approach, but with the presence of H2O. Here we report a novel route to synthesize either fully dense or hollow core/shell metal-oxide nanoparticles (MnOx/FeOx) by simply adding or not oxidants in the reaction. We demonstrate that the presence of oxidants (e.g., O-2 carried by the not properly degassed H2O or (CH3)(3)NO) allows the formation of hollow structures by a galvanic reaction between the MnOx and FeOx phases. In particular, the use of (CH3)(3)NO as oxidant allows for the first time a very reliable all-organic synthesis of hollow MnOx/FeOx nanoparticles without the need of water (with a somewhat unreliable oxidation role). Oxidants permit the formation of MnOx/FeOx hollow nanoparticles by an intermediate step where the MnO/Mn3O4 seeds are oxidized into Mn3O4, thus allowing the Mn3+ -> Mn2+ reduction by the Fe2+ ions. The lack of proper oxidative conditions leads to full-dense onion-like core/shell MnO/Mn3O4/Fe3O4 particles. Thus, we show that the critical step for galvanic replacement is the proper seed oxidation states so that their chemical reduction by the shell ions is thermodynamically favored.
机译:从应用和基本观点来看,多组分金属氧化物纳米颗粒是有吸引力的结构。胶体化学中合成参数的控制允许具有新形态的复杂纳米结构的生长。特别地,已经报道了使用有机基种子生长方法基于电流置换的双相金属氧化物空心纳米颗粒的合成,但是存在H 2O。在这里,我们报告了一种通过简单地在反应中添加或不添加氧化剂来合成完全致密或中空的核/壳金属氧化物纳米颗粒(MnOx / FeOx)的新颖途径。我们证明了氧化剂的存在(例如,由未适当脱气的H2O或(CH3)(3)NO携带的O-2)允许通过MnOx和FeOx相之间的电反应形成空心结构。特别是,使用(CH3)(3)NO作为氧化剂,首次实现了中空MnOx / FeOx纳米粒子的非常可靠的全有机合成,而无需水(氧化作用有些不可靠)。氧化剂允许通过中间步骤形成MnOx / FeOx中空纳米粒子,在该中间步骤中,MnO / Mn3O4晶种被氧化成Mn3O4,从而使Mn3 +-> Mn2 +被Fe2 +离子还原。缺乏适当的氧化条件会导致洋葱状核/壳MnO / Mn3O4 / Fe3O4颗粒浓密。因此,我们表明电流置换的关键步骤是适当的种子氧化态,因此热力学上有利于壳离子对它们的化学还原。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号