...
首页> 外文期刊>The Journal of Horticultural Science & Biotechnology >Quantification of temperature, CO2, and light effects on crop photosynthesis as a basis for model-based greenhouse climate control.
【24h】

Quantification of temperature, CO2, and light effects on crop photosynthesis as a basis for model-based greenhouse climate control.

机译:量化温度,CO 2 和光对作物光合作用的影响,作为基于模型的温室气候控制的基础。

获取原文
获取原文并翻译 | 示例

摘要

Detailed measurements of crop photosynthesis at supra-optimal temperatures and high CO2 levels, to validate models for use in model-based greenhouse climate control, are still lacking. We performed CO2 gas exchange measurements to estimate gross crop photosynthesis (Pgc) from measured net crop gas exchange in the daytime, and at night, with temperature and CO2 conditions higher than the normal temperature range, and with two crops of different architecture: tomato, and cut chrysanthemum. From these measurements, Pgc was predicted at photosynthetic photon flux densities (IPPFD) of 300, 600, 900 and 1,200 micro mol m-2 s-1 for different temperatures (from 20 degrees C to 33 degrees C) and CO2 concentrations (400, 700, and 1,000 micro mol mol-1). From these predictions, the optimum temperature that maximised Pgc was determined. CO2 concentration had a strong and similar effect on Pgc in both crops, and this effect decreased with increasing CO2 level. For example, at 32 degrees C, there was a 55% or 49% increase in Pgc between 400 and 1,000 micro mol mol-1 CO2 in chrysanthemum and tomato, respectively. A clear shift to higher optimum temperatures at elevated CO2 levels was observed, and was different for the two crops. Chrysanthemum had a lower temperature optimum than tomato for a maximum Pgc (e.g., at 1,000 micro mol mol-1 CO2 and 600 micro mol m-2 s-1 IPPFD, the difference was 3.1 degrees C). Compared to leaf photosynthesis, crop photosynthesis had a lower temperature optimum (the difference could be several degrees C), and the shift in optimum temperature from a low to a high CO2 level was lower for a canopy compared to a leaf. Therefore, optimising the leaf photosynthetic rate in model-based greenhouse climate control would not result in optimum crop photosynthesis.
机译:仍然缺乏在超最佳温度和高CO 2 水平下作物光合作用的详细测量,以验证模型是否可用于基于模型的温室气候控制。我们进行了CO 2 气体交换测量,以根据测得的净作物气体交换估算作物的光合作用总量( P gc )在白天和晚上,温度和CO 2 条件都高于正常温度范围,并且具有两种不同结构的作物:西红柿和切菊花。通过这些测量,可以预测光合光子通量密度为 P gc )在不同温度(20摄氏度至33摄氏度)下分别为300、600、900和1200 micro mol m -2 s -1 C)和CO 2 浓度(400、700和1,000 micro mol mol -1 )。根据这些预测,确定使 P gc 最大化的最佳温度。 CO 2 浓度对两种作物的 P gc 有强烈且相似的影响,并且这种影响随着增加而降低CO 2 级别。例如,在32摄氏度下, P gc 的增加量为400至1,000微摩尔mol 的55%或49% > -1 CO 2 分别位于菊花和番茄中。在CO 2 水平升高的情况下,观察到明显的向较高最佳温度的转变,并且这两种作物不同。菊花的最大 P gc 的最佳温度低于番茄(例如,在1,000 micro mol mol -1 CO 2 和600微摩尔m -2 s -1 I PPFD < / sub> ,相差3.1摄氏度)。与叶片光合作用相比,作物光合作用的温度最优值较低(相差可能为几摄氏度),并且与冠层相比,最优温度从低CO 2 水平的变化要低。一片叶子。因此,在基于模型的温室气候控制中优化叶片光合速率不会导致最佳的作物光合作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号