...
首页> 外文期刊>Chemistry of Materials: A Publication of the American Chemistry Society >Hydrogen Production via Chemical Looping Redox Cycles Using Atomic Layer Deposition-Synthesized Iron Oxide and Cobalt Ferrites
【24h】

Hydrogen Production via Chemical Looping Redox Cycles Using Atomic Layer Deposition-Synthesized Iron Oxide and Cobalt Ferrites

机译:使用原子层沉积合成的氧化铁和钴铁氧体通过化学循环氧化还原循环生产氢

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Iron oxide (γ-Fe2O3) and cobalt ferrite (Co_xFe_(3-x)O4) thin films were synthesized via atomic layer deposition (ALD) on high surface-area (50 m~2 g~(-1)) m-ZrO2 supports. The oxide films were grown by sequentially depositing iron oxide and cobalt oxide, adjusting the number of iron oxide to cobalt oxide cycles to achieve a desired stoichiometry. High resolution transmission electron microscopy and X-ray diffraction indicate that the films are crystalline and have a thickness of ~2.5 nm. Raman spectroscopy was used to confirm the predominance of the spinel phase in the case of cobalt ferrite. Films were chemically reduced at 600 °C using mixtures of H2, CO, and CO2. The evolution of oxide phases as a function of time during this reduction was observed using in situ X-ray diffraction, showing that γ-Fe2O3 are reduced only to FeO, while Co_xFe_(3-x)O4 are reduced all the way to a Co/Fe alloy. Subsequent water splitting measurements in a stagnation flow reactor yielded peak H2 rates exceeding virtually all of those reported in the literature. Co_(0.85)Fe_(2.15)O4 films were successfully cycled without deactivation and produced four times more H2 than γ-Fe2O3 films principally because of the deeper chemical reduction possible. Together, these results suggest a path to robust materials for chemical looping cycles and thermal gas splitting. They also indicate that ALD films can serve as an effective platform for probing the surface chemistry of these processes, since they maintain their reactivity at these temperatures, in contrast with oxide powders that are deactivated by sintering and grain growth.
机译:通过原子层沉积(ALD)在高表面积(50 m〜2 g〜(-1))m-ZrO2上合成了氧化铁(γ-Fe2O3)和铁氧体钴(Co_xFe_(3-x)O4)薄膜支持。通过依次沉积氧化铁和氧化钴,调节氧化铁至氧化钴循环的数量以实现所需的化学计量,来生长氧化物膜。高分辨率透射电子显微镜和X射线衍射表明该膜是晶体,厚度约为2.5 nm。拉曼光谱法用于确定在铁酸钴的情况下尖晶石相的优势。使用H2,CO和CO2的混合物在600°C下化学还原膜。使用原位X射线衍射观察到在还原过程中氧化物相随时间的变化,表明γ-Fe2O3仅还原为FeO,而Co_xFe_(3-x)O4一直还原为Co /铁合金。随后在停滞流反应器中进行的水分解测量结果产生的H2峰值速率实际上超过了文献中报道的所有峰值。 Co_(0.85)Fe_(2.15)O4薄膜在不失活的情况下成功进行了循环,其产生的H2是γ-Fe2O3薄膜的四倍,这主要是因为可能进行更深的化学还原。总之,这些结果表明了用于化学循环和热气裂解的坚固材料的途径。他们还表明,ALD薄膜可以用作探测这些过程的表面化学的有效平台,因为与在烧结和晶粒生长中失活的氧化物粉末相比,ALD薄膜在这些温度下仍保持其反应活性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号