首页> 外文期刊>Chemistry of Materials: A Publication of the American Chemistry Society >Microporous Organic Polyimides for CO2 and H2O Capture and Separation from CH4 and N-2 Mixtures: Interplay between Porosity and Chemical Function
【24h】

Microporous Organic Polyimides for CO2 and H2O Capture and Separation from CH4 and N-2 Mixtures: Interplay between Porosity and Chemical Function

机译:用于从CH4和N-2混合物中捕获和分离CO2和H2O的微孔有机聚酰亚胺:孔隙率和化学功能之间的相互作用

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Porous polyimides have been considered to be a promising material class for gas capture and sequestration, leading to the synthesis of a substantial number of individual networks with noteworthy sorption properties. In spite of these efforts, the vision of a chemical control of adsorption and desorption of small molecules, in particular, for the competing uptake of technical relevant gas mixtures, is still hardly investigated. Here, we present a systematic study of five new polyimide networks based on a set of linkers with chemical functionalities covering the full range from hydrophobic to hydrophilic interactions. The corresponding microporous organic polyimides (MOPI-I to-V) were synthesized successfully based on a condensation reaction between amino and anhydride linker molecules in m-cresol at high temperatures, resulting in cross-linking degrees beyond 95% in all cases. Argon and carbon dioxide isotherms reveal surface areas up to 940 m(2)/g with ultramicroporosity, about 50% microporosity and high thermal stabilities under air with decomposition temperatures up to 480 degrees C. Sorption screening for variable temperatures revealed remarkable uptakes for carbon dioxide up to 3.8 mmol/g and water vapor up to 19.5 mmol/g combined with a smooth gate opening around 0.25 p/p(0) for MOPI-IV. In contrast, for MOPI-V the water vapor uptake decreases down to 7 mmol/g. Interestingly, the trend of the selectivities calculated by LAST and Henry does not correlate with the uptake behavior. For instance, MOPI-I and MOPI-III exhibit with 78 and 13 the highest CO2 over N-2 and CH4 Henry selectivities, although their CO2 uptake is around 3.0 mmol/g. In total, we attribute the sorption properties for this class of materials mainly to the void size and shape within the ultramicroporous region. The chemical environment of the surfaces seems to have little influence on the uptake and a stronger effect on the separation behavior.
机译:多孔聚酰亚胺被认为是用于气体捕获和封存的有前途的材料类别,导致合成了大量具有值得注意的吸附特性的单个网络。尽管进行了这些努力,但是仍很少研究化学控制小分子的吸附和解吸的前景,尤其是为了竞争性吸收与技术有关的气体混合物。在这里,我们基于一组具有化学功能的连接子,对五个新的聚酰亚胺网络进行了系统研究,其化学功能涵盖了从疏水相互作用到亲水相互作用的整个范围。基于高温下间甲酚中氨基和酸酐连接分子之间的缩合反应,成功合成了相应的微孔有机聚酰亚胺(MOPI-1至-V),所有情况下交联度均超过95%。氩气和二氧化碳等温线显示表面积高达940 m(2)/ g,具有超微孔性,约50%的微孔率和分解温度高达480°C的空气中的高热稳定性。可变温度下的吸附筛查显示二氧化碳的显着吸收高达3.8 mmol / g的水蒸气和高达19.5 mmol / g的水蒸气,以及MOPI-IV的大约0.25 p / p(0)的平滑门开口。相反,对于MOPI-V,水蒸气的吸收降低至7 mmol / g。有趣的是,由LAST和Henry计算的选择性趋势与吸收行为不相关。例如,尽管MOPI-I和MOPI-III的CO2吸收量约为3.0 mmol / g,但它们在N-2和CH4亨利选择性上的最高CO2浓度为78和13。总的来说,我们将这类材料的吸附性能主要归因于超微孔区域内的空隙尺寸和形状。表面的化学环境似乎对吸收几乎没有影响,对分离行为的影响更大。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号