...
首页> 外文期刊>The Journal of Ecology >Interactions among roots, mycorrhizas and free-living microbial communities differentially impact soil carbon processes
【24h】

Interactions among roots, mycorrhizas and free-living microbial communities differentially impact soil carbon processes

机译:根,菌根和自由微生物群落之间的相互作用差异性地影响土壤碳过程

获取原文
获取原文并翻译 | 示例
           

摘要

Plant roots, their associated microbial community and free-living soil microbes interact to regulate the movement of carbon from the soil to the atmosphere, one of the most important and least understood fluxes of terrestrial carbon. Our inadequate understanding of how plant-microbial interactions alter soil carbon decomposition may lead to poor model predictions of terrestrial carbon feedbacks to the atmosphere. Roots, mycorrhizal fungi and free-living soil microbes can alter soil carbon decomposition through exudation of carbon into soil. Exudates of simple carbon compounds can increase microbial activity because microbes are typically carbon limited. When both roots and mycorrhizal fungi are present in the soil, they may additively increase carbon decomposition. However, when mycorrhizas are isolated from roots, they may limit soil carbon decomposition by competing with free-living decomposers for resources. We manipulated the access of roots and mycorrhizal fungi to soil insitu in a temperate mixed deciduous forest. We added C-13-labelled substrate to trace metabolized carbon in respiration and measured carbon-degrading microbial extracellular enzyme activity and soil carbon pools. We used our data in a mechanistic soil carbon decomposition model to simulate and compare the effects of root and mycorrhizal fungal presence on soil carbon dynamics over longer time periods. Contrary to what we predicted, root and mycorrhizal biomass did not interact to additively increase microbial activity and soil carbon degradation. The metabolism of C-13-labelled starch was highest when root biomass was high and mycorrhizal biomass was low. These results suggest that mycorrhizas may negatively interact with the free-living microbial community to influence soil carbon dynamics, a hypothesis supported by our enzyme results. Our steady-state model simulations suggested that root presence increased mineral-associated and particulate organic carbon pools, while mycorrhizal fungal presence had a greater influence on particulate than mineral-associated organic carbon pools.Synthesis. Our results suggest that the activity of enzymes involved in organic matter decomposition was contingent upon root-mycorrhizal-microbial interactions. Using our experimental data in a decomposition simulation model, we show that root-mycorrhizal-microbial interactions may have longer-term legacy effects on soil carbon sequestration. Overall, our study suggests that roots stimulate microbial activity in the short term, but contribute to soil carbon storage over longer periods of time.
机译:植物根部,其相关的微生物群落和自由活动的土壤微生物相互作用,调节碳从土壤到大气的移动,这是最重要和了解最少的陆地碳通量之一。我们对植物与微生物之间的相互作用如何改变土壤碳分解的了解不足,可能导致对陆地碳向大气反馈的模型预测不佳。根,菌根真菌和自由活动的土壤微生物可以通过将碳渗出到土壤中来改变土壤碳的分解。简单的碳化合物的渗出物可以增加微生物的活性,因为微生物通常受到碳的限制。当土壤中同时存在根和菌根真菌时,它们可能会增加碳的分解。但是,当菌根与根分离时,它们可能会通过与自由分解物争夺资源而限制土壤碳的分解。我们在温带混合落叶林中操纵根和菌根真菌进入土壤的原位。我们添加了C-13标记的底物来追踪呼吸中的代谢碳,并测量了降解碳的微生物细胞外酶的活性和土壤碳库。我们在机械的土壤碳分解模型中使用了我们的数据,以模拟和比较根和菌根真菌的存在对较长时间土壤碳动态的影响。与我们的预测相反,根和菌根生物量没有相互作用,不会增加微生物活性和土壤碳降解。当根系生物量高而菌根生物量低时,C-13标记淀粉的代谢最高。这些结果表明,菌根可能与自由生活的微生物群落产生负面影响,从而影响土壤碳动态,这是我们酶学结果支持的假设。我们的稳态模型模拟表明,根部存在增加了与矿物相关的有机碳库和颗粒相关的有机碳库,而菌根真菌的存在比与矿物相关的有机碳库对颗粒的影响更大。我们的结果表明,参与有机物分解的酶的活性取决于根-菌根-微生物的相互作用。在分解模拟模型中使用我们的实验数据,我们表明根-菌根-微生物相互作用可能对土壤碳固存有较长期的遗留影响。总体而言,我们的研究表明,根系在短期内会刺激微生物的活动,但会在更长的时间内促进土壤碳的储存。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号