首页> 外文期刊>The Journal of Chemical Physics >THERMALLY ACTIVATED ESCAPE PROCESSES IN A DOUBLE WELL COUPLED TO A SLOW HARMONIC MODE
【24h】

THERMALLY ACTIVATED ESCAPE PROCESSES IN A DOUBLE WELL COUPLED TO A SLOW HARMONIC MODE

机译:良好耦合到慢谐波模式的热激活逃逸过程

获取原文
获取原文并翻译 | 示例
           

摘要

We present accurate calculations of thermally activated rates for a symmetric double well system coupled to a dissipative harmonic mode. Diffusive barrier crossing is treated by solving the time-independent two-dimensional Smoluchowski equation as a function of a coupling and a diffusion anisotropy parameter. The original problem is transformed to a Schrodinger equation with a Hamiltonian describing a reactive system coupled to a one-dimensional harmonic bath. The calculations an performed using a matrix representation of the Hamiltonian operator in a set of orthonormal basis functions. An effective system-specific basis is introduced which consists of adiabatically displaced eigenfunctions of the coupled harmonic oscillator and those of the uncoupled reactive subsystem. This representation provides a very rapid convergence rate. Just a few basis functions are sufficient to obtain highly accurate eigenvalues with a small computational effort. The presented results demonstrate the applicability of the method in all regimes of interest, reaching from inter-well thermal activation (fast harmonic mode) to deep intra-well relaxation (slow harmonic mode). Our calculations reveal the inapplicability of the Kramers-Langer theory in certain regions of parameter space not only when the anisotropy parameter is exponentially small, but even in the isotropic diffusion case when the coupling is weak. The calculations show also that even for large barrier heights there is a region in the parameter space with multiexponential relaxation towards equilibrium. An asymptotic theory of barrier crossing in the strongly anisotropic case is presented, which agrees well with the numerically exact results. (C) 1996 American Institute of Physics. [References: 58]
机译:我们提出了对称双井系统耦合耗散谐波模式的热活化速率的精确计算。通过求解与耦合和扩散各向异性参数有关的与时间无关的二维Smoluchowski方程,可以解决扩散性障碍穿越问题。最初的问题被转换为具有哈密顿量的Schrodinger方程,该哈密顿量描述了与一维谐波浴耦合的电抗系统。使用一组正交基函数中的哈密顿算子的矩阵表示来执行计算。引入了有效的系统特定基础,该基础由耦合谐波振荡器和非耦合电抗子系统的绝热位移本征函数组成。这种表示提供了非常快速的收敛速度。仅需几个基本函数就可以用很小的计算量来获得高精度的特征值。提出的结果证明了该方法在所有感兴趣的方案中的适用性,从井间热激活(快速谐波模式)到深井内弛豫(慢谐波模式)。我们的计算结果表明,不仅在各向异性参数呈指数形式变小时,甚至在耦合较弱的各向同性扩散情况下,Kramers-Langer理论在参数空间的某些区域中都不适用。计算还表明,即使对于较大的势垒高度,参数空间中也会存在一个朝着平衡方向呈多指数松弛的区域。提出了一种在各向异性强的情况下势垒穿越的渐近理论,该理论与数值精确结果吻合良好。 (C)1996年美国物理研究所。 [参考:58]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号