首页> 外文期刊>The Journal of Chemical Physics >Multicomponent semiconductor material discovery guided by a generalized correlated function expansion
【24h】

Multicomponent semiconductor material discovery guided by a generalized correlated function expansion

机译:广义相关函数展开指导的多组分半导体材料发现

获取原文
获取原文并翻译 | 示例
           

摘要

A correlated function expansion (CFE) is presented to systematically sample an N-dimensional dual composition-processing variable space to efficiently guide the laboratory discovery complex materials with desirable properties. The CFE breaks down the material properties in terms of the independent, pair and higher order cooperative roles of the composition-processing variables. The CFE is expected to rapidly converge in the N-dimensional space of variables to specify (1) minimally sized hierarchical libraries of materials, and (2) how to utilize the observed properties of the library members to rapidly estimate the material properties throughout the entire composition-processing variable space. As an illustration the material properties (i. e., alloy bond length and the direct optical band gap E_0) over the full composition space of the multicomponent semiconductor alloys, Ga_xIn_(1-x)P_yAs_(1-y), Ga_xIn_(1-x)As_ySb_(1-y), and Ga_xIn_(1-x)P_ySb_zAs_(1-y-z), are expressed through the CFE in terms of existing ternary experimental data. Band gap experimental results for Ga_xIn_(1-x)P_yAs_(1-y) lattice matched to InP and for Ga_xIn_(1-x)As_ySb_(1-y) lattice matched to GaSb are in good agreement with the CFE estimates from ternary input data alone. The alloy Ga_xIn_(1-x)P_ySb_zAs_(1-y-z) is found to provide more diverse opportunities to achieve desired band gaps while still maintaining the lattice matching conditions by controlling the concentration of Sb at the anion site. For even broader classes of materials the CFE is generic tool designed to guide laboratory syntheses to aid in the discovery of new materials with desired properties.
机译:提出了相关函数扩展(CFE),以系统地对N维双重成分处理变量空间进行采样,从而有效地指导实验室发现具有所需特性的复杂材料。 CFE根据成分处理变量的独立,成对和更高阶的协作角色分解了材料属性。预计CFE将在变量的N维空间中快速收敛,以指定(1)最小尺寸的材料层次库,以及(2)如何利用库成员的观察到的属性快速估算整个材料的属性合成处理可变空间。作为说明,在多组分半导体合金Ga_xIn_(1-x)P_yAs_(1-y),Ga_xIn_(1-x)的整个成分空间内的材料特性(即合金键长和直接光学带隙E_0) As_ySb_(1-y)和Ga_xIn_(1-x)P_ySb_zAs_(1-yz)通过CFE表示为现有的三元实验数据。与InP匹配的Ga_xIn_(1-x)P_yAs_(1-y)晶格和与GaSb匹配的Ga_xIn_(1-x)As_ySb_(1-y)晶格的带隙实验结果与三元输入的CFE估计非常吻合仅数据。发现合金Ga_xIn_(1-x)P_ySb_zAs_(1-y-z)提供了更多的机会来实现所需的带隙,同时仍通过控制阴离子部位的Sb浓度来保持晶格匹配条件。对于更广泛的材料类别,CFE是通用工具,旨在指导实验室合成,以帮助发现具有所需特性的新材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号