首页> 外文期刊>The Journal of Chemical Physics >Molecular dynamics simulations in the grand canonical ensemble: Application to clay mineral swelling
【24h】

Molecular dynamics simulations in the grand canonical ensemble: Application to clay mineral swelling

机译:大正则合集中的分子动力学模拟:在粘土矿物溶胀中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

A grand canonical ensemble molecular dynamics (GMD) simulation method has been adapted to examine the thermodynamics of clay-mineral hydration. In the GMD method, the number of water molecules in the system is treated as a continuous variable for which an equation of motion is established. Fluctuations in the water content at constant chemical potential are investigated using trajectories of this particle number variable. A bias potential may be used to modify the free energy contour along the particle number coordinate. This catalyzes particle fluctuations and greatly improves simulation convergence. Adaptation of the GMD method to treat hydrated clay minerals included the introduction of a local-control technique that fixes the water chemical potential in the clay interlayer region. In addition, a bias-potential feedback algorithm was implemented to improve particle fluctuation efficiency. Information pertaining to the free energy contour, generated during the course of the simulation, was used periodically to enhance the bias potential. This allowed for the utilization of a single input bias potential under a broad range of simulation conditions. The method was used to investigate swelling of a cesium-montmorillonite clay. Measured disjoining pressures showed oscillations that are indicative of crystalline-swelling phase transitions. Integration of the disjoining pressures yielded a swelling free energy profile with distinct free-energy minima for the one- and two-layer hydrates. The results may be compared qualitatively with both clay swelling and surface force apparatus experiments, and with previous simulation studies of simple fluids in slit pores.
机译:大正则合奏分子动力学(GMD)模拟方法已被用来检查粘土矿物水合作用的热力学。在GMD方法中,系统中水分子的数量被视为连续变量,为此建立了运动方程。使用该粒子数变量的轨迹研究了在恒定化学势下水含量的波动。偏置电位可用于沿着粒子数坐标修改自由能轮廓。这可催化粒子波动并大大提高仿真收敛性。 GMD方法用于处理水合粘土矿物的改进包括引入局部控制技术,该技术可固定粘土夹层区域中的水化学势。此外,还采用了一种偏置电位反馈算法来提高粒子起伏效率。在仿真过程中生成的与自由能轮廓有关的信息会定期用于增强偏置电势。这允许在广泛的仿真条件下利用单个输入偏置电位。该方法用于研究铯-蒙脱土的溶胀。测得的分离压力显示出振荡,该振荡指示晶体膨胀的相变。分离压力的积分产生了膨胀的自由能曲线,其中一层和两层水合物的自由能极小。可将结果与粘土溶胀和表面力仪器实验以及先前对裂隙孔中简单流体的模拟研究进行定性比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号