首页> 外文期刊>The Journal of Chemical Physics >NONADIABATIC TRANSITION STATE THEORY AND MULTIPLE POTENTIAL ENERGY SURFACE MOLECULAR DYNAMICS OF INFREQUENT EVENTS
【24h】

NONADIABATIC TRANSITION STATE THEORY AND MULTIPLE POTENTIAL ENERGY SURFACE MOLECULAR DYNAMICS OF INFREQUENT EVENTS

机译:非绝热跃迁的非绝热过渡态理论和多能表面分子动力学

获取原文
获取原文并翻译 | 示例
           

摘要

Classical transition state theory (TST) provides the rigorous basis for the application of molecular dynamics (MD)to infrequent ever;ts, i.e., reactions that are slow due to a high energy barrier. The TST rate is simply the equilibrium flux through a surface that divides reactants from products. In order to apply MD to infrequent events, corrections to the TST late that account for recrossings of the dividing surface-are computed by starting trajectories at die dividing surface and integrating them backward and forward in time. Both classical TST and conventional MD invoke the adiabatic approximation, i.e., the, assumption that nuclear motion evolves on a single potential energy surface. Many chemical rate processes involve multiple potential energy surfaces, however, and a number of ''surface-hopping'' MD methods have been developed in order to incorporate nonadiabatic transitions among the potential energy surfaces. In this paper we generalize TST to processes involving multiple potential energy surfaces. This provides the framework for a new method for MD simulation of infrequent events for reactions that evolve on multiple potential energy surfaces. We show how this method can be applied rigorously even in conjunction; with phase-coherent surface-hopping methods, where the probability of switching potential energy surfaces-depends on the history of the trajectory, so integrating trajectories backward to calculate the recrossing correction is problematic. We illustrate this new method by applying it in conjunction with the ''molecular dynamics with quantum transitions'' (MDQT) surface-hopping method to a one-dimensional two-state barrier crossing problem. (C) 1995 American Institute of Physics. [References: 30]
机译:经典的过渡态理论(TST)为将分子动力学(MD)应用于罕见的反应提供了严格的基础,即由于高能垒而导致的反应缓慢。 TST速率只是通过表面的平衡通量,该表面将反应物与产物分开。为了将MD应用于不经常发生的事件,对TST的修正(考虑到划分表面的重交)是通过在划分表面开始轨迹并将它们在时间上向前和向后进行积分来计算的。传统的TST和常规的MD都调用绝热近似,即核运动在单个势能面上演化的假设。许多化学速率过程涉及多个势能表面,但是,为了在势能表面之间纳入非绝热跃迁,已经开发了许多“表面跳跃” MD方法。在本文中,我们将TST推广到涉及多个势能面的过程。这提供了一种新方法的框架,该新方法可用于对在多个势能面上演化的反应的罕见事件进行MD模拟。我们展示了即使结合使用,也可以严格应用此方法。在相位相干表面跳变方法中,势能表面切换的可能性取决于轨迹的历史,因此向后积分轨迹以计算交叉校正是有问题的。我们通过将其与“带有量子跃迁的分子动力学”(MDQT)表面跳跃方法结合应用于一维两态势垒穿越问题来说明这种新方法。 (C)1995年美国物理研究所。 [参考:30]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号