首页> 外文期刊>The Journal of Chemical Physics >Density functional analysis of C-13 and H-1 chemical shifts and bonding in mercurimethanes and organomercury hydrides: The role of scalar relativistic, spin-orbit, and substituent effects [Review]
【24h】

Density functional analysis of C-13 and H-1 chemical shifts and bonding in mercurimethanes and organomercury hydrides: The role of scalar relativistic, spin-orbit, and substituent effects [Review]

机译:汞甲烷和有机汞氢化物中C-13和H-1化学位移和键的密度泛函分析:标量相对论,自旋轨道和取代基效应的作用[综述]

获取原文
获取原文并翻译 | 示例
           

摘要

Relativistic and substituent effects on C-13 NMR chemical shifts in mercurimethanes and on H-1 shifts in organomercury hydrides have been studied by density functional calculations, comparing quasirelativistic and nonrelativistic effective-core potentials for mercury. The positive shift increments in the C-13 shifts as a function of HgCl or HgCN substituents in the mercurimethanes CHn(HgX)(4-n)(X = Cl, CN; n = 0-4) are due to scalar relativistic effects. The relativistic effects for a given structure and the influence of the relativistic Hg-C bond contraction partly oppose each other, in contrast to results obtained recently for O-17 shifts in oxo complexes. These differences are due to different types of metal orbitals involved in bonding, mainly of 6s-character for the mercury compounds but predominantly of 5d-character for the oxo complexes. Remaining discrepancies between computed and experimental C-13 shifts of CH3HgX for more electropositive substituents X = CH3, SiH3 and particularly between computed and experimental H-1 shifts in organomercury hydrides RHgH (R = CH3, C2H5, C2H3, C6H5, C6F5), appear to be largely due to spin-orbit coupling, as indicated by preliminary calculations of spin-orbit corrections to the chemical shifts. The spin-orbit contributions are almost entirely due to a rho(u)(X-Hg-Y) --> pi*(Hg 6(x,y))-type coupling and affect exclusively the shift tensor components perpendicular to the X-Hg-Y axis. The magnitude of the spin-orbit corrections correlates well with the inverse of the energy differences between the corresponding Kohn-Sham MOs. Thus spin-orbit coupling probably accounts in part for the increase of the C-13 shifts in CH3HgX with decreasing electronegativity of X, and for similar trends of the H-1 shifts in organomercury hydrides. In addition to the chemical shift results, analyses of the molecular and electronic structures of the mercurimethanes reveal interesting counterexamples to Bent's rule. (C) 1998 American Institute of Physics. [References: 112]
机译:通过密度泛函计算研究了相对论和取代基对汞甲烷中C-13 NMR化学位移和对有机汞氢化物中H-1位移的影响,比较了汞的准相对论性和非相对论性有效核心电势。 C-13位移的正位移增量是汞甲烷CHn(HgX)(4-n)(X = Cl,CN; n = 0-4)中HgCl或HgCN取代基的函数,这是由于标量相对论效应引起的。给定结构的相对论效应和相对论Hg-C键收缩的影响部分相互对立,这与最近在氧配合物中O-17转变获得的结果相反。这些差异是由于键合涉及的金属轨道类型不同,对于汞化合物而言,主要是6s字符,对于羰基配合物,主要是5d字符。对于更多的正电取代基X = CH3,SiH3,CH3HgX的计算和实验C-13位移之间仍然存在差异,尤其是有机汞氢化物RHgH(R = CH3,C2H5,C2H3,C6H5,C6F5)的计算和实验H-1位移之间仍然存在差异。很大程度上归因于自旋轨道耦合,如对化学位移的自旋轨道校正的初步计算所表明的。自旋轨道的贡献几乎完全归因于rho(u)(X-Hg-Y)-> pi *(Hg 6(x,y))型耦合,并且仅影响垂直于X的位移张量分量-Hg-Y轴。自旋轨道校正的幅度与相应的Kohn-Sham MO之间的能量差的倒数很好地相关。因此,自旋轨道耦合可能部分解释了CH3HgX中C-13移位的增加和X电负性的降低,以及有机汞氢化物H-1移位的类似趋势。除化学位移结果外,对汞甲烷的分子和电子结构的分析还揭示了Bent规则的有趣反例。 (C)1998美国物理研究所。 [参考:112]

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号