...
首页> 外文期刊>The Journal of Chemical Physics >Methods for geometry optimization of large molecules. I. An O(N-2) algorithm for solving systems of linear equations for the transformation of coordinates and forces
【24h】

Methods for geometry optimization of large molecules. I. An O(N-2) algorithm for solving systems of linear equations for the transformation of coordinates and forces

机译:大分子几何优化的方法。 I. O(N-2)算法,用于求解线性方程组以转换坐标和力

获取原文
获取原文并翻译 | 示例
           

摘要

The most recent methods in quantum chemical geometry optimization use the computed energy and its first derivatives with an approximate second derivative matrix. The performance of the optimization process depends highly on the choice of the coordinate system. In most cases the optimization is carried out in a complete internal coordinate system using the derivatives computed with respect to Cartesian coordinates. The computational bottlenecks for this process are the transformation of the derivatives into the internal coordinate system, the transformation of the resulting step back to Cartesian coordinates, and the evaluation of the Newton-Raphson or rational function optimization (RFO) step. The corresponding systems of linear equations occur as sequences of the form y(i)=M(i)x(i), where M-i can be regarded as a perturbation of the previous symmetric matrix Mi-1. They are normally solved via diagonalization of symmetric real matrices requiring O(N-3) operations. The current study is focused on a special approach to solving these sequential systems of linear equations using a method based on the update of the inverse of the symmetric matrix Mi. For convergence, this algorithm requires a number of O(N-2) operations with an O(N-3) factor for only the first calculation. The method is generalized to include redundant (singular) systems. The application of the algorithm to coordinate transformations in large molecular geometry optimization is discussed. (C) 1998 American Institute of Physics. [S0021-9606(98)30341-4]. [References: 34]
机译:量子化学几何优化中的最新方法使用计算出的能量及其一阶导数和近似的二阶导数矩阵。优化过程的性能在很大程度上取决于坐标系的选择。在大多数情况下,使用相对于笛卡尔坐标计算的导数,在完整的内部坐标系中进行优化。此过程的计算瓶颈是将导数转换为内部坐标系,将所得步骤转换回笛卡尔坐标,以及评估Newton-Raphson或有理函数优化(RFO)步骤。线性方程组的相应系统以y(i)= M(i)x(i)的形式出现,其中M-i可被视为对先前对称矩阵Mi-1的扰动。通常通过对角实对需要O(N-3)运算的对称实矩阵来求解它们。当前的研究集中在一种特殊的方法上,该方法使用基于对称矩阵Mi的逆更新的方法来求解线性方程组的这些顺序系统。为了收敛,此算法仅在第一次计算时需要使用O(N-3)因子进行许多O(N-2)操作。该方法被概括为包括冗余(单个)系统。讨论了该算法在大分子几何优化中协调转化的应用。 (C)1998美国物理研究所。 [S0021-9606(98)30341-4]。 [参考:34]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号