...
首页> 外文期刊>The International Journal of Advanced Manufacturing Technology >Machinability study of glass fibre-reinforced polymer composites during end milling
【24h】

Machinability study of glass fibre-reinforced polymer composites during end milling

机译:玻璃纤维增​​强聚合物复合材料端铣削加工性能的研究

获取原文
获取原文并翻译 | 示例

摘要

Machining of composite materials is usually performed to achieve required geometrical shapes and dimensional tolerances. However, machinability evaluation of glass fibre-reinforced polymer (GFRP) composites in end milling has not yet received its due attention in the research community despite the extensive industrial use of this process. This work aims to elucidate the end milling machinability of GFRP composites with respect to surface roughness, tool life and machining forces. Experiments were conducted under different experimental parameters and their levels according to the Taguchi design of experiment method. Taguchi analysis combined with statistical analysis of variance (ANOVA) was performed to quantify the effects of spindle speed, feed rate and depth of cut on those characteristics. Multiple regression analysis (MRA) was also employed to establish parametric relationships between the experimental parameters and the machinability outputs. Results from ANOVA and MRA reveal that feed rate is the governing factor affecting all the machinability outputs. The calculated values from MRA have been found to be fairly close to experimental values in almost all cases. Validation tests under randomly selected machining conditions have further demonstrated the feasibility of the developed mathematical models with 8-12% error for tool life and machining forces predictions while >19% error for calculating the surface roughness.
机译:通常执行复合材料的加工以获得所需的几何形状和尺寸公差。然而,尽管该工艺在工业上得到了广泛的应用,但在端铣削中对玻璃纤维增​​强聚合物(GFRP)复合材料的可加工性评估尚未得到应有的重视。这项工作旨在阐明GFRP复合材料在表面粗糙度,刀具寿命和机械加工力方面的立铣加工性能。根据田口设计的实验方法,在不同的实验参数及其水平下进行实验。进行了Taguchi分析和方差统计分析(ANOVA),以量化主轴转速,进给速度和切削深度对这些特征的影响。还使用多元回归分析(MRA)来建立实验参数与可加工性输出之间的参数关系。 ANOVA和MRA的结果表明进给速度是影响所有切削性能输出的主要因素。已经发现,在几乎所有情况下,MRA的计算值都非常接近实验值。在随机选择的加工条件下进行的验证测试进一步证明了开发的数学模型的可行性,该模型的刀具寿命和加工力预测误差为8-12%,而用于计算表面粗糙度的误差则大于19%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号