首页> 外文期刊>The European physical journal, B. Condensed matter physics >Numerical simulation and pattern characterization of nonlinear spatiotemporal dynamics on fractal surfaces for the whole-heart modeling applications
【24h】

Numerical simulation and pattern characterization of nonlinear spatiotemporal dynamics on fractal surfaces for the whole-heart modeling applications

机译:全心建模应用中分形表面非线性时空动力学的数值模拟和模式表征

获取原文
获取原文并翻译 | 示例
           

摘要

Engineered and natural systems often involve irregular and self-similar geometric forms, which is called fractal geometry. For instance, precision machining produces a visually flat surface, while which looks like a rough mountain in the nanometer scale under the microscope. Human heart consists of a fractal network of muscle cells, Purkinje fibers, arteries and veins. Cardiac electrical activity exhibits highly nonlinear and fractal behaviors. Although space-time dynamics occur on the fractal geometry, e.g., chemical etching on the surface of machined parts and electrical conduction in the heart, most of existing works modeled space-time dynamics (e.g., reaction, diffusion and propagation) on the Euclidean geometry (e.g., flat planes and rectangular volumes). This brings inaccurate approximation of real-world dynamics, due to sensitive dependence of nonlinear dynamical systems on initial conditions. In this paper, we developed novel methods and tools for the numerical simulation and pattern recognition of spatiotemporal dynamics on fractal surfaces of complex systems, which include (1) characterization and modeling of fractal geometry, (2) fractal-based simulation and modeling of spatiotemporal dynamics, (3) recognizing and quantifying spatiotemporal patterns. Experimental results show that the proposed methods outperform traditional modeling approaches based on the Euclidean geometry, and provide effective tools to model and characterize space-time dynamics on fractal surfaces of complex systems.
机译:工程系统和自然系统通常涉及不规则且自相似的几何形式,称为分形几何。例如,精密加工产生视觉上平坦的表面,而在显微镜下看起来却像纳米级的粗糙山峰。人的心脏由肌肉细胞,浦肯野纤维,动脉和静脉的分形网络组成。心脏电活动表现出高度的非线性和分形行为。尽管时空动力学发生在分形几何体上,例如机械加工零件的表面上的化学蚀刻和心脏中的电传导,但大多数现有工作都在欧几里得几何学上模拟了时空动力学(例如反应,扩散和传播) (例如,平面和矩形体积)。由于非线性动力学系统对初始条件的敏感依赖,这带来了逼真的真实世界动力学的近似。在本文中,我们开发了新颖的方法和工具来对复杂系统的分形表面进行时空动力学的数值模拟和模式识别,其中包括(1)分形几何的表征和建模,(2)基于分形的时空动力学模拟和建模动力学,(3)识别和量化时空模式。实验结果表明,所提出的方法优于基于欧几里得几何的传统建模方法,并提供了有效的工具来建模和表征复杂系统的分形面上的时空动力学。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号