首页> 外文期刊>The FEBS journal >Distinct conformational behaviors of four mammalian dual-flavin reductases (cytochrome P450 reductase, methionine synthase reductase, neuronal nitric oxide synthase, endothelial nitric oxide synthase) determine their unique catalytic profiles
【24h】

Distinct conformational behaviors of four mammalian dual-flavin reductases (cytochrome P450 reductase, methionine synthase reductase, neuronal nitric oxide synthase, endothelial nitric oxide synthase) determine their unique catalytic profiles

机译:四种哺乳动物双黄素还原酶(细胞色素P450还原酶,蛋氨酸合酶还原酶,神经元一氧化氮合酶,内皮型一氧化氮合酶)的独特构象行为决定了它们独特的催化特性

获取原文
获取原文并翻译 | 示例
           

摘要

Multidomain enzymes often rely on large conformational motions to function. However, the conformational setpoints, rates of domain motions and relationships between these parameters and catalytic activity are not well understood. To address this, we determined and compared the conformational setpoints and the rates of conformational switching between closed unreactive and open reactive states in four mammalian diflavin NADPH oxidoreductases that catalyze important biological electron transfer reactions: cytochrome P450 reductase, methionine synthase reductase and endothelial and neuronal nitric oxide synthase. We used stopped-flow spectroscopy, single turnover methods and a kinetic model that relates electron flux through each enzyme to its conformational setpoint and its rates of conformational switching. The results show that the four flavoproteins, when fully-reduced, have a broad range of conformational setpoints (from 12% to 72% open state) and also vary 100-fold with respect to their rates of conformational switching between unreactive closed and reactive open states (cytochrome P450 reductase > neuronal nitric oxide synthase > methionine synthase reductase > endothelial nitric oxide synthase). Furthermore, simulations of the kinetic model could explain how each flavoprotein can support its given rate of electron flux (cytochrome c reductase activity) based on its unique conformational setpoint and switching rates. The present study is the first to quantify these conformational parameters among the diflavin enzymes and suggests how the parameters might be manipulated to speed or slow biological electron flux.
机译:多结构域酶通常依靠大的构象运动来起作用。然而,构象设定点,区域运动的速率以及这些参数与催化活性之间的关系尚不清楚。为了解决这个问题,我们确定并比较了四种哺乳动物二黄素NADPH氧化还原酶的构象设定点和闭合无反应态和开放反应态之间的构象转换速率,这些酶催化重要的生物电子转移反应:细胞色素P450还原酶,蛋氨酸合酶还原酶以及内皮和神经元硝酸氧化物合酶。我们使用了停流光谱法,单周转法和动力学模型,该模型将通过每种酶的电子通量与其构象设定点及其构象转换速率相关联。结果表明,四种黄素蛋白完全还原后,其构象设定点范围很广(从打开状态的12%到72%),并且它们在无反应的闭合和反应性的开放之间的构象转换速率也相差100倍状态(细胞色素P450还原酶>神经元一氧化氮合酶>蛋氨酸合酶还原酶>内皮一氧化氮合酶)。此外,动力学模型的模拟可以解释每个黄素蛋白如何基于其独特的构象设定点和转换速率来支持其给定的电子通量速率(细胞色素c还原酶活性)。本研究是第一个量化双黄素酶之间的构象参数,并建议如何操纵这些参数以加快或减慢生物电子通量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号