...
首页> 外文期刊>The FEBS journal >Implication of the glutamine synthetase/glutamate synthase pathway in conditioning the amino acid metabolism in bundle sheath and mesophyll cells of maize leaves
【24h】

Implication of the glutamine synthetase/glutamate synthase pathway in conditioning the amino acid metabolism in bundle sheath and mesophyll cells of maize leaves

机译:谷氨酰胺合成酶/谷氨酸合成酶途径对玉米叶片束鞘和叶肉细胞氨基酸代谢的调控

获取原文
获取原文并翻译 | 示例
           

摘要

We investigated the role of glutamine synthetases (cytosolic GS1 and chloroplast GS2) and glutamate synthases (ferredoxin-GOGAT and NADH-GOGAT) in the inorganic nitrogen assimilation and reassimilation into amino acids between bundle sheath cells and mesophyll cells for the remobilization of amino acids during the early phase of grain filling in Zea mays L. The plants responded to a light/dark cycle at the level of nitrate, ammonium and amino acids in the second leaf, upward from the primary ear, which acted as the source organ. The assimilation of ammonium issued from distinct pathways and amino acid synthesis were evaluated from the diurnal rhythms of the transcripts and the encoded enzyme activities of nitrate reductase, nitrite reductase, GS1, GS2, ferredoxin-GOGAT, NADH-GOGAT, NADH-glutamate dehydrogenase and asparagine synthetase. We discerned the specific role of the isoproteins of ferredoxin and ferredoxin:NADP(+) oxidoreductase in providing ferredoxin-GOGAT with photoreduced or enzymatically reduced ferredoxin as the electron donor. The spatial distribution of ferredoxin-GOGAT supported its role in the nitrogen (re)assimilation and reallocation in bundle sheath cells and mesophyll cells of the source leaf. The diurnal nitrogen recycling within the plants took place via the specific amino acids in the phloem and xylem exudates. Taken together, we conclude that the GS1/ferredoxin-GOGAT cycle is the main pathway of inorganic nitrogen assimilation and recycling into glutamine and glutamate, and preconditions amino acid interconversion and remobilization.
机译:我们研究了谷氨酰胺合成酶(胞质GS1和叶绿体GS2)和谷氨酸合成酶(铁氧还蛋白-GOGAT和NADH-GOGAT)在无机氮同化和重新同化成束鞘细胞和叶肉细胞之间的氨基酸过程中对氨基酸迁移的作用。在第二个叶中,从作为源器官的主穗向上,植物在第二个叶片中的硝酸盐,铵和氨基酸水平上对亮/暗循环做出了响应。从转录本的昼夜节律和硝酸还原酶,亚硝酸还原酶,GS1,GS2,铁氧还蛋白-GOGAT,NADH-GOGAT,NADH-谷氨酸脱氢酶和天冬酰胺合成酶。我们辨别了铁氧还蛋白和铁氧还蛋白:NADP(+)氧化还原酶的同工异体在提供铁氧还蛋白-GOGAT的光还原或酶还原铁氧还蛋白作为电子供体的特定作用。铁氧还蛋白-GOGAT的空间分布支持其在源叶的束鞘细胞和叶肉细胞中的氮(再)同化和重新分配中的作用。植物内的昼夜氮循环是通过韧皮部和木质部分泌物中的特定氨基酸发生的。综上所述,我们得出的结论是,GS1 /铁氧还蛋白-GOGAT循环是无机氮同化并循环转化为谷氨酰胺和谷氨酸的主要途径,并且是氨基酸相互转化和固定化的前提。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号