首页> 外文期刊>The European Journal of Neuroscience >Cortical control of thermoregulatory sympathetic activation.
【24h】

Cortical control of thermoregulatory sympathetic activation.

机译:皮层控制体温调节交感神经激活。

获取原文
获取原文并翻译 | 示例
       

摘要

Thermoregulation enables adaptation to different ambient temperatures. A complex network of central autonomic centres may be involved. In contrast to the brainstem, the role of the cortex has not been clearly evaluated. This study was therefore designed to address cerebral function during a whole thermoregulatory cycle (cold, neutral and warm stimulation) using 18-fluordeoxyglucose-PET (FDG-PET). Sympathetic activation parameters were co-registered. Ten healthy male volunteers were examined three times on three different days in a water-perfused whole-body suit. After a baseline period (32 degrees C), temperature was either decreased to 7 degrees C (cold), increased to 50 degrees C (warm) or kept constant (32 degrees C, neutral), thereafter the PET examination was performed. Cerebral glucose metabolism was increased in infrapontine brainstem and cerebellar hemispheres during cooling and warming, each compared with neutral temperature. Simultaneously, FDG uptake decreased in the bilateral anterior/mid-cingulate cortex during warming, and in the right insula during cooling and warming. Conjunction analyses revealed that right insular deactivation and brainstem activation appeared both during cold and warm stimulation. Metabolic connectivity analyses revealed positive correlations between the cortical activations, and negative correlations between these cortical areas and brainstem/cerebellar regions. Heart rate changes negatively correlated with glucose metabolism in the anterior cingulate cortex and in the middle frontal gyrus/dorsolateral prefrontal cortex, and changes of sweating with glucose metabolism in the posterior cingulate cortex. In summary, these results suggest that the cerebral cortex exerts an inhibitory control on autonomic centres located in the brainstem or cerebellum. These findings may represent reasonable explanations for sympathetic hyperactivity, which occurs, for example, after hemispheric stroke.
机译:温度调节可以适应不同的环境温度。可能会涉及中央自治中心的复杂网络。与脑干相反,皮质的作用尚未明确评估。因此,本研究旨在使用18-脱氧葡萄糖-PET(FDG-PET)解决整个体温调节循环(冷,中性和温暖刺激)中的脑功能。共情激活参数被共同注册。十名健康的男性志愿者在三天不同的时间里穿了全身水服,接受了三次检查。在基准时间段(32摄氏度)后,将温度降低到7摄氏度(冷),升高到50摄氏度(热)或保持恒定(32摄氏度,中性),然后进行PET检查。与中性温度相比,在降温和升温期间,脑桥下脑干和小脑半球中的脑葡萄糖代谢增加。同时,在升温过程中,双侧前/扣带中皮层的FDG摄取减少,在降温和升温过程中,右岛的FDG摄取减少。结合分析显示,在冷刺激和热刺激期间均出现右岛突部失活和脑干活化。代谢连通性分析揭示了皮质激活之间的正相关,以及这些皮质区域与脑干/小脑区域之间的负相关。在前扣带回皮层和中额回/背外侧前额叶皮层,心率变化与葡萄糖代谢呈负相关,在后扣带回皮质中,出汗随葡萄糖代谢而变化。总之,这些结果表明,大脑皮层对位于脑干或小脑中的植物神经中枢具有抑制作用。这些发现可能代表对交感神经亢进的合理解释,例如在半球性中风后发生。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号