...
【24h】

Single Molecule Electronics

机译:单分子电子

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Most people date modem interest in using molecules as electronic devices to the publication of a classic paper by Aviram and Ratner. Their paper outlined a scheme for a molecular rectifier and drew attention to the concept of using molecules as incredibly small electronic components. Despite thirty years of subsequent research, a central challenge remains: How can molecules be connected between wires to make useful molecular electronic devices? One macroscopic approach, subject to failures at a microscopic level, is to lay a metal film on top of a self-assembled monolayer that sits on a metal electrode. A microscopic approach uses a scanning tunneling microscope (STM) to address one or a few molecules. In this case, the contact between the tip and the molecule is characterized only through measurement of the current itself, making independent characterization of the contact geometry difficult. Somewhat better control of the contact is obtained by using an atomic force microscope with a conducting probe. Despite this work, many questions remain: Is just one molecule contacted? What is the atomic arrangement of the top contact? Does contamination on the probe affect the current? Reed and co-workers used a breakjunction and molecules with two "sticky ends". The junction was made of a gold film that was cracked open to a remarkable degree of precision with a mechanical lever. The molecule, benzenedithiol, had opposing ends of the benzene ring functionalized with thiol groups. These thiol groups react with gold, so that careful breaking of the junction in the presence of the molecules should result in two macroscopic metal contacts bridged by one, or a few, molecules. This system is much better defined than the scanning probe experiments, but even so, the interpretation is open to question because the microscopic nature of the junction was unknown. The results of theoretical modeling underpin this concern. Currents calculated for this system with modern density-functional methods are some 500 times larger than the experimental values, assuming that, in the best case, the experiment really measures the conductance of a single molecule. This discrepancy is hard to understand, because modern calculations are generally reliable. Therefore, the problem lies with uncertainties about the atomic structure of the junction. Complex electronic responses can be obtained from metallic nanojunctions in the absence of molecules spanning the gap.
机译:大多数人将现代对使用分子作为电子设备的兴趣与Aviram和Ratner的经典论文一起发表。他们的论文概述了分子整流器的方案,并提请注意将分子用作不可思议的小型电子组件的概念。尽管进行了三十年的后续研究,仍然存在一个主要挑战:如何在导线之间连接分子以制造有用的分子电子设备?在微观水平上遭受破坏的一种宏观方法是在位于金属电极上的自组装单层膜上放置金属膜。显微镜方法使用扫描隧道显微镜(STM)处理一个或几个分子。在这种情况下,尖端和分子之间的接触仅通过电流本身的测量来表征,从而难以独立表征接触几何形状。通过使用带有导电探针的原子力显微镜,可以更好地控制接触。尽管进行了这项工作,仍然存在许多问题:仅接触了一个分子吗?最高接触的原子排列是什么?探头上的污染物会影响电流吗?里德和他的同事们使用了一个分离结和带有两个“粘性末端”的分子。接合处由金膜制成,该金膜通过机械杠杆以极高的精度裂开。分子苯二硫醇具有被硫醇基官能化的苯环的相对末端。这些硫醇基团与金发生反应,因此在存在分子的情况下仔细断开连接会导致两个宏观金属触点被一个或几个分子桥接。与扫描探针实验相比,该系统的定义要好得多,但是即使如此,由于结的微观性质尚不清楚,因此该解释仍存在争议。理论建模的结果证明了这种担忧。假设在最佳情况下,实验实际上测量的是单个分子的电导,那么用现代密度泛函方法为此系统计算的电流大约是实验值的500倍。这种差异很难理解,因为现代计算通常是可靠的。因此,问题在于结的原子结构的不确定性。在没有跨越间隙的分子的情况下,可以从金属纳米结获得复杂的电子响应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号