...
【24h】

Alloy Electrodeposition

机译:合金电沉积

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Alloy electrodeposition was first developed in the 1840s at nearly the same time as metal deposition, with brass coatings being an early commercial application. Despite this long history, alloy electrodeposition continues to attract attention; the majority of the electrodepo-sition-related articles published by The Electrochemical Society are on alloys. The enduring interest in alloy electrodeposition is tied to the wide range and tunability of physical properties one can achieve by varying alloy composition. As a result, most high-value-added applications of electrodeposition involve alloys, with the notable exception of copper interconnects for integrated circuits. For example, in the emerging field of nano- and microelectromechanical systems (NEMS/MEMS), alloying is key for achieving materials that are sufficiently strong to withstand grueling mechanical and environmental demands.~1 Other recent examples of alloy electrodeposition from the Journal and Letters include lithium-ion secondary battery anodes, magnetic recording materials, solder bumps, and catalysts for direct methanol fuel cells. The purpose of this tutorial is to provide non-expert practitioners of the art a flavor for the science, engineering, and issues that underpin and rationalize alloy electrodeposition. Electrodeposition involves the reduction of precursor metal ions and/or metal ion complexes from solution at a conductive substrate. (Chemical reductants are used as the source of electrons in electroless deposition.) At a minimum, an alloy electrodeposition process requires an electrolyte with two or more reducible metal ions, a conductive substrate, a counter electrode, a power supply, and a container to hold the electrolyte and electrodes. This simplicity accounts for the appeal of electrodeposition, but may also lead one to neglect some basic controls needed to ensure reproducibility. As we describe below, good alloy electrode-position also requires a means for reproducibly mixing the electrolyte, some consideration of cell geometry, and, like all electrodeposition processes, careful substrate preparation.
机译:合金电沉积最早是在1840年代与金属沉积同时进行的,黄铜涂层是一种早期的商业应用。尽管历史悠久,合金电沉积仍吸引着人们的注意。电化学学会发表的大多数与电沉积有关的文章都是关于合金的。对合金电沉积的持久兴趣与通过改变合金成分可以达到的物理性能的广泛范围和可调性有关。结果,电沉积的大多数高附加值应用都涉及合金,值得注意的是集成电路的铜互连除外。例如,在新兴的纳米和微机电系统(NEMS / MEMS)领域中,合金化对于获得足够坚固以承受苛刻的机械和环境要求的材料至关重要。〜1包括锂离子二次电池阳极,磁记录材料,焊料凸点和直接甲醇燃料电池的催化剂。本教程的目的是向本领域的非专业从业者介绍科学,工程学以及支撑和合理化合金电沉积的问题。电沉积涉及从导电基底上的溶液中还原前体金属离子和/或金属离子络合物。 (化学还原剂被用作化学沉积中的电子源。)至少,合金电沉积工艺需要具有两个或更多个可还原金属离子的电解质,导电性基材,对电极,电源和一个容器。保持电解液和电极。这种简单性说明了电沉积的吸引力,但也可能导致人们忽略了确保重复性所需的一些基本控制措施。如下所述,良好的合金电极位置还需要一种可重现地混合电解质的方法,需要考虑电池的几何形状,并且像所有电沉积过程一样,要仔细地准备衬底。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号