...
首页> 外文期刊>The Biochemical Journal >A distinct difference in the metabolic stimulus-response coupling pathways for regulating proinsulin biosynthesis and insulin secretion that lies at the level of a requirement for fatty acyl moieties
【24h】

A distinct difference in the metabolic stimulus-response coupling pathways for regulating proinsulin biosynthesis and insulin secretion that lies at the level of a requirement for fatty acyl moieties

机译:用于调节胰岛素原生物合成和胰岛素分泌的代谢刺激-反应偶联途径的显着差异在于脂肪酰基部分的需求水平

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The regulation of proinsulin biosynthesis in pancreatic beta-cells is vital for maintaining optimal insulin stores for glucose-induced insulin release. The majority of nutrient fuels that induce insulin release also stimulate proinsulin biosynthesis, but since insulin exocytosis and proinsulin synthesis involve different cellular mechanisms, a point of divergence in the respective metabolic stimulus-response coupling pathways must exist. A parallel examination of the metabolic regulation of proinsulin biosynthesis and insulin secretion was undertaken in the same beta-cells. In MIN6 cells, glucose-induced proinsulin biosynthesis and insulin release shared a requirement for glycolysis to generate stimulus-coupling signals. Pyruvate stimulated both proinsulin synthesis (threshold 0.13-0.2 mM) and insulin release (threshold 0.2-0.3 mM) in MIN6 cells, which was eliminated by an inhibitor of pyruvate transport (1 mM alpha-cyano-4-hydroxycinnamate). A combination of alpha-oxoisohexanoate and glutamine also stimulated proinsulin biosynthesis and insulin release in MIN6 cells, which, together with the effect of pyruvate, indicated that anaplerosis was necessary for instigating secondary metabolic stimulus-coupling signals in the beta-cell. A consequence of increased anaplerosis in beta-cells is a marked increase in malonyl-CoA, which in turn inhibits beta-oxidation and elevates cytosolic fatty acyl-CoA levels. In the beta-cell, long-chain fatty acyl moieties have been strongly implicated as metabolic stimulus-coupling signals for regulating insulin exocytosis. Indeed, it was found in MINE cells and isolated rat pancreatic islets that exogenous oleate, palmitate and 2-bromopalmitate all markedly potentiated glucose-induced insulin release. However, in the very same beta-cells, these fatty acids in contrast inhibited glucose-induced proinsulin biosynthesis. This implies that neither fatty acyl moieties nor beta-oxidation are required for the metabolic stimulus-response coupling pathway specific for proinsulin biosynthesis, and represent an early point of divergence of the two signalling pathways for metabolic regulation of proinsulin biosynthesis and insulin release. Therefore alternative metabolic stimulus-coupling factors for the specific control of proinsulin biosynthesis at the translational level were considered. One possibility examined was an increase in glycerophosphate shuttle activity and change in cytosolic redox state of the p-cell, as reflected by changes in the ratio of alpha-glycerophosphate to dihydroxyacetone phosphate. Although 16.7 mM glucose produced a significant rise in the alpha-glycerophosphate/dihydroxyacetone phosphate ratio, 1 mM pyruvate did not. It follows that the cytosolic redox state and fatty acyl moieties are not necessarily involved as secondary metabolic stimulus-coupling factors for regulation of proinsulin biosynthesis. However, the results indicate that glycolysis and the subsequent increase in anaplerosis are indeed necessary for this signalling pathway, and therefore an extramitochondrial product of beta-cell pyruvate metabolism (that is upstream of the increased cytosolic fatty acyl-CoA) acts as a key intracellular secondary signal for specific control of proinsulin biosynthesis by glucose at the level of translation. [References: 49]
机译:胰腺β细胞中胰岛素原生物合成的调节对于维持最佳的胰岛素储存以维持葡萄糖诱导的胰岛素释放至关重要。大多数诱导胰岛素释放的营养燃料也刺激胰岛素原的生物合成,但是由于胰岛素胞吐和胰岛素原的合成涉及不同的细胞机制,因此在各自的代谢刺激-反应偶联途径中必须存在分歧点。在相同的β细胞中对胰岛素原生物合成和胰岛素分泌的代谢调节进行了平行检查。在MIN6细胞中,葡萄糖诱导的胰岛素原生物合成和胰岛素释放共同要求糖酵解以产生刺激耦合信号。丙酮酸刺激MIN6细胞中的胰岛素原合成(阈值0.13-0.2 mM)和胰岛素释放(阈值0.2-0.3 mM),并通过丙酮酸转运抑制剂(1 mMα-氰基-4-羟基肉桂酸酯)消除。 α-氧代异己酸酯和谷氨酰胺的组合还刺激MIN6细胞中胰岛素原的生物合成和胰岛素释放,这与丙酮酸的作用一起表明,动脉粥样硬化对于增强β细胞中的次级代谢刺激耦合信号是必需的。 β细胞的动脉粥样硬化增加的结果是丙二酰辅酶A的显着增加,而丙二酰辅酶A则抑制β氧化并提高了胞质脂肪酰基辅酶A的水平。在β细胞中,长链脂肪酰基部分被强烈暗示为调节胰岛素胞吐作用的代谢刺激耦合信号。实际上,在矿细胞和分离的大鼠胰岛中发现外源油酸盐,棕榈酸盐和2-溴棕榈酸盐均显着增强了葡萄糖诱导的胰岛素释放。然而,在完全相同的β细胞中,这些脂肪酸却抑制了葡萄糖诱导的胰岛素原的生物合成。这暗示对于胰岛素原生物合成特异的代谢刺激-反应偶联途径既不需要脂肪酰基部分也不需要β-氧化,并且代表用于胰岛素原生物合成和胰岛素释放的代谢调节的两个信号传导途径的早期分歧。因此,考虑了在翻译水平上特异性控制胰岛素原生物合成的替代性代谢刺激偶联因子。检验的一种可能性是甘油磷酸穿梭活性的增加和p细胞胞质氧化还原状态的改变,这反映在α-甘油磷酸酯与磷酸二羟基丙酮的比例变化上。尽管16.7 mM葡萄糖使α-甘油磷酸酯/二羟基丙酮磷酸酯的比率显着增加,但1 mM丙酮酸却没有。由此可见,胞质氧化还原状态和脂肪酰基部分不一定作为调节胰岛素原生物合成的次级代谢刺激耦合因子。然而,结果表明糖酵解和随后的动脉粥样硬化的增加对于该信号通路确实是必需的,因此β-细胞丙酮酸代谢的线粒体产物(即增加的胞质脂肪酰基辅酶A的上游)起着关键的细胞内作用在葡萄糖水平上通过葡萄糖特异性控制胰岛素原生物合成的第二信号。 [参考:49]

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号