首页> 外文期刊>The American Naturalist: Devoted to the Conceptual Unification of the Biological Sciences >Causality and persistence in ecological systems: a nonparametric spectral Granger causality approach.
【24h】

Causality and persistence in ecological systems: a nonparametric spectral Granger causality approach.

机译:生态系统中的因果关系和持久性:非参数频谱格兰杰因果关系方法。

获取原文
获取原文并翻译 | 示例
       

摘要

Directionality in coupling, defined as the linkage relating causes to their effects at a later time, can be used to explain the core dynamics of ecological systems by untangling direct and feedback relationships between the different components of the systems. Inferring causality from measured ecological variables sampled through time remains a formidable challenge further made difficult by the action of periodic drivers overlapping the natural dynamics of the system. Periodicity in the drivers can often mask the self-sustained oscillations originating from the autonomous dynamics. While linear and direct causal relationships are commonly addressed in the time domain, using the well-established machinery of Granger causality (G-causality), the presence of periodic forcing requires frequency-based statistics (e.g., the Fourier transform), able to distinguish coupling induced by oscillations in external drivers from genuine endogenous interactions. Recent nonparametric spectral extensions of G-causality to the frequency domain pave the way for the scale-by-scale decomposition of causality, which can improve our ability to link oscillatory behaviors of ecological networks to causal mechanisms. The performance of both spectral G-causality and its conditional extension for multivariate systems is explored in quantifying causal interactions within ecological networks. Through two case studies involving synthetic and actual time series, it is demonstrated that conditional G-causality outperforms standard G-causality in identifying causal links and their concomitant timescales.
机译:耦合中的方向性定义为导致原因与其联系的联系,可通过解开系统不同组件之间的直接关系和反馈关系来解释生态系统的核心动态。从随时间采样的测量生态变量推断因果关系仍然是一个艰巨的挑战,由于周期性驱动程序的作用与系统的自然动力重叠,使得这一挑战变得更加困难。驱动程序中的周期性通常可以掩盖源自自主动力学的自我维持的振荡。虽然线性和直接因果关系通常在时域中解决,但使用完善的Granger因果关系(G因果关系)机制,周期性强迫的存在需要基于频率的统计信息(例如,傅里叶变换),能够区分由真正的内源性相互作用引起的外部驱动器振荡引起的耦合。 G因果关系最近在频域上的非参数频谱扩展为因果关系的按比例分解铺平了道路,这可以提高我们将生态网络的振荡行为与因果机制联系起来的能力。频谱G因果关系的性能及其对多变量系统的条件扩展在量化生态网络内的因果相互作用方面得到了探索。通过两个涉及综合和实际时间序列的案例研究,表明在确定因果关系及其伴随的时标时,条件G因果关系优于标准G因果关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号