...
首页> 外文期刊>The American mineralogist >Redox effects on calcite-portlandite-fluid equilibria at forearc conditions: Carbon mobility, methanogenesis, and reduction melting of calcite
【24h】

Redox effects on calcite-portlandite-fluid equilibria at forearc conditions: Carbon mobility, methanogenesis, and reduction melting of calcite

机译:在前臂条件下氧化还原对方解石-硅酸盐-流体平衡的影响:碳迁移率,甲烷生成和方解石还原熔融

获取原文
获取原文并翻译 | 示例
           

摘要

Oxygen fugacity (?O_2) is a fundamental parameter that controls carbon mobility in aqueous fluids in geological environments such as subduction zones, where reduced serpentinite fluids have the potential to infiltrate oxidized carbonate-bearing lithologies. Using experiments and calculations, we describe how mineral-fluid equilibria evolve as ?O_2 decreases in the model Ca-C-O-H system at forearc conditions (300–700 °C and 2–10 kbar). Experimental calcite solubility was constant at ?O_2 values from quartz-fayalite-magnetite (QFM) to hematite-magnetite (HM). At lower ?O_2 values of iron-magnetite (IM) or wüstite-magnetite (WM), calcite reacted with H_2 to form methane plus portlandite or melt. These results were consistent with thermodynamic calculations and indicate that carbon mobility, as parameterized by total aqueous carbon ([CTOT]), is strongly dependent on ?O_2. At constant pressure and temperature, carbon mobility is minimized at oxidizing conditions, where [C_(TOT)] is controlled by calcite solubility. Carbon mobility is maximized at the most reducing conditions because all the carbon in the system is present as CH_4. An intermediate region of carbon mobility exists in which calcite is stable with a CH_4-bearing fluid. As pressure increases from 2 to 10 kbar, the ?O_2 range over which calcite is stable with a methane-rich fluid shifts to more reducing conditions. The variety of geological conditions with the potential for redox enhancement of carbon mobility becomes more restricted with depth. Reduction melting was observed at 700 °C and 6 kbar, and at 650 °C and 10 kbar, due to the partial reaction of calcite to portlandite at conditions above the hydrous melting curve of calcite+portlandite. Although likely metastable in the present experiments, reduction melting may occur in nature whenever H2 partially reduces carbonate minerals at pressures and temperatures above the hydrous melting curve of calcite+portlandite. Whether it causes melting or not, calcite reduction is likely an important mechanism for abiotic methanogenesis in natural systems such as subduction zone forearcs or similar environments with the potential for interaction of reduced fluids with carbonate minerals. Because calcite solubility at oxidized conditions is already known to increase substantially with pressure, the additional increase in carbon mobility provided by calcite reduction implies that subduction zones may host some of the most carbon-rich aqueous fluids on Earth.
机译:氧气逸度(?O_2)是一个基本参数,它控制地质环境(如俯冲带)中含水流体中的碳迁移率,在这些环境中,蛇纹石减少后的流体有可能渗入氧化的含碳酸盐岩性。通过实验和计算,我们描述了在前臂条件(300–700°C和2–10 kbar)下,模型Ca-C-O-H系统中,随着?O_2的减小,矿物流体平衡如何演化。从石英-铁橄榄石-磁铁矿(QFM)到赤铁矿-磁铁矿(HM),实验方解石的溶解度恒定在ΔO_2。当铁-磁铁矿(IM)或锰铁矿-磁铁矿(WM)的?O_2值较低时,方解石与H_2反应生成甲烷和钙铁矿或熔融。这些结果与热力学计算是一致的,并且表明由总含水碳([CTOT])参数化的碳迁移率强烈依赖于ΔO_2。在恒定压力和温度下,碳的迁移率在氧化条件下被最小化,其中[C_(TOT)]由方解石溶解度控制。由于系统中所有碳均以CH_4的形式存在,因此在最具还原性的条件下,碳的迁移率得以最大化。存在一个碳迁移率的中间区域,其中方解石对带有CH_4的流体稳定。当压力从2 kbar增加到10 kbar时,方解石稳定且富含甲烷的流体在?O_2范围内转移至更多还原条件。具有潜在的氧化还原增强碳移动性的各种地质​​条件随着深度而变得越来越受限制。由于方解石在方解石+钙矾石的含水熔融曲线以上的条件下发生部分反应,从而在650°C和10 kbar的条件下观察到还原熔融。尽管在本实验中可能是亚稳态的,但只要H2在高于方解石+矾土的含水熔融曲线的压力和温度下部分还原碳酸盐矿物,还原熔融就可能在自然界发生。不论方解石是否引起熔融,方解石还原可能是自然系统(如俯冲带前肢)或类似环境中非生物产甲烷的重要机制,具有还原液与碳酸盐矿物相互作用的潜力。因为已经知道方解石在氧化条件下的溶解度会随着压力而显着增加,所以方解石还原所带来的碳迁移率的额外增加意味着俯冲带可能蕴藏着地球上一些碳含量最高的含水流体。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号