首页> 外文期刊>The American mineralogist >The W-WO2 oxygen fugacity buffer (WWO) at high pressure and temperature: Implications for f(o2) buffering and metal-silicate partitioning
【24h】

The W-WO2 oxygen fugacity buffer (WWO) at high pressure and temperature: Implications for f(o2) buffering and metal-silicate partitioning

机译:高压和高温下的W-WO2氧气逸度缓冲液(WWO):对f(o2)缓冲液和金属硅酸盐分配的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Synchrotron X-ray diffraction data were obtained to simultaneously measure unit-cell volumes of W and WO2 at pressures and temperatures up to 70 GPa and 2300 K. Both W and WO2 unit-cell volume data were fit to Mie-Gruneisen equations of state; parameters for W are Kr = 307 ( 0.4) GPa, K-T = 4.05 (+/- 0.04), yo = 1.61 ( 0.03), and q = 1.54 ( 0.13). Three phases were observed in WO2 with structures in the P2(1)/c, Pnma, and C2c space groups. The transition pressures are 4 and 32 GPa for the P211 c-Pnma and Pnma-C2I c phase changes, respectively. The P2,/c and Pnma phases have previously been described, whereas the C2I c phase is newly described here. Equations of state were fitted for these phases over their respective pressure ranges yielding the parameters KT = 238 ( 7), 230 ( 5), 304 ( 3) GPa, K-j, = 4 (fixed), 4 (fixed), 4 (fixed) GPa, yo = 1.45 (+/- 0.18), 1.22 ( 0.07), 1.21 ( 0.12), and q =1 (fixed), 2.90 (+/- 1.5), 1 (fixed) for the P2(1)/c, Pnma, and C2I c phases, respectively. The W-W02 buffer (WWO) was extended to high pressure using these W and WO2 equations of state. The T-f02 slope of the WWO buffer along isobars is positive from 1000 to 2500 K with increasing pressure up to at least 60 GPa. The WWO buffer is at a higher foe than the iron-wilstite (IW) buffer at pressures lower than 40 GPa, and the magnitude of this difference decreases at higher pressures. This implies an increasingly lithophile character for W at higher pressures. The WWO buffer was quantitatively applied to W metal-silicate partitioning by using the WWO-IW buffer difference in combination with literature data on W metal-silicate partitioning to model the exchange coefficient (KE,) for the Fe-W exchange reaction. This approach captures the non-linear pressure dependence of W metal-silicate partitioning using the W WO-IW buffer difference. Calculation of KD along a peridotite liquidus predicts a decrease in W siderophility at higher pressures that supports the qualitative behavior predicted by the WWO-IVV buffer difference, and agrees with findings of others. Comparing the competing effects of temperature and pressure the results here indicate that pressure exerts a greater effect on W metal-silicate partitioning.
机译:获得了同步加速器X射线衍射数据,可同时测量高达70 GPa和2300 K的压力和温度下W和WO2的晶胞体积。W和WO2晶胞体积数据均符合Mie-Gruneisen状态方程; W的参数为Kr = 307(0.4)GPa,K-T = 4.05(+/- 0.04),yo = 1.61(0.03)和q = 1.54(0.13)。在WO2中观察到三个阶段,在P2(1)/ c,Pnma和C2c空间组中具有结构。对于P211 c-Pnma和Pnma-C2IC相变,过渡压力分别为4 GPa和32 GPa。先前已经描述了P2,/ c和Pnma相,而这里重新描述了C2Ic相。在这些相的各自压力范围内拟合状态方程,得出参数KT = 238(7),230(5),304(3)GPa,Kj = 4(固定),4(固定),4(固定) )GPa,对于P2(1),yo = 1.45(+/- 0.18),1.22(0.07),1.21(0.12)和q = 1(固定),2.90(+/- 1.5),1(固定)/ c,Pnma和C2I c相。使用这些W和WO2状态方程,将W-W02缓冲区(WWO)扩展到高压。 WWO缓冲液沿等压线的T-f02斜率在1000至2500 K范围内为正,且压力增加到至少60 GPa。在低于40 GPa的压力下,WWO缓冲区的竞争优势高于铁-白云母(IW)缓冲区,而在较高的压力下,这种差异的大小会减小。这意味着在更高的压力下,W的亲石性越来越强。通过使用WWO-IW缓冲液差异与W金属-硅酸盐分配的文献数据相结合,将WWO缓冲液定量地应用于W金属-硅酸盐分配,以模拟Fe-W交换反应的交换系数(KE,)。这种方法使用W WO-IW缓冲差来捕获W金属硅酸盐分配的非线性压力依赖性。沿着橄榄岩液相线的KD的计算预测了在较高压力下W亲铁性的下降,这支持了由WWO-IVV缓冲液差异预测的定性行为,并且与其他发现一致。比较温度和压力的竞争影响,此处的结果表明压力对W金属硅酸盐的分配作用更大。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号