首页> 外文期刊>The American mineralogist >Melting curve of NaCl to 20 GPa from electrical measurements of capacitive current
【24h】

Melting curve of NaCl to 20 GPa from electrical measurements of capacitive current

机译:从电容电流的电气测量可知NaCl熔融至20 GPa的曲线

获取原文
获取原文并翻译 | 示例
           

摘要

Using an in situ electrical method and the multi-anvil apparatus, we determined the melting curve of sodium chloride (NaCl) up to similar to 20 GPa, with an estimated uncertainty of +/- 40 K. Our results agree well with the existing data up to 6.5 GPa. At higher pressures, the melting temperatures from this study are as much as 200 K higher than those from an experimental study using the diamond-anvil cell (DAC), and are up to 500 K lower than those from theoretical studies using molecular dynamics (MD). The discrepancies may originate from surface melting in the DAC measurements, which underestimate the melting temperature, and from superheating in MD calculations, which over-predict the melting temperature. Fitting our results to the Simon equation yield (T/T-0)(4.5) = (P - P-0)/0.6 + 1, where T and T-0 are the melting temperatures at P and P-0, respectively, with T-0 = 1073.6 K, T in K and Pin GPa. The Simon equation fits the experimental data within uncertainties and therefore can be used to interpolate the melting curve. Using the equation of state (EoS) of NaCl at 300 K, the results are fitted to the Kraut-Kennedy equation in the form of T/T-0 = (V-0 - V)/V-0.4.37 + 1, where T (in K) and T-0 (= 1073.6 K) are the melting temperatures at V and V-0 (at 0.0001 GPa), respectively. At pressures above 14 GPa, the experimental data deviate from the Kraut-Kennedy equation fit toward lower temperatures, probably because the volume dependence of the Gruneisen parameter was ignored in the equation. The Gilvarry-Lindemann equation T-m similar to 1.689 center dot f(2 center dot)Theta(2 center dot)(0)(V-0/V)(2(gamma-1/3)) provides a satisfactory fit to the melting curve of NaCl between 0 and 19 GPa if the exponent q in the volume dependence of the Gruneisen parameter gamma = gamma(0)center dot(V/V-0)(q) is allowed to deviate from one. Given that the melting curve of NaCl up to 6.5 GPa is well established, monitoring the melting of NaCl offers an efficient alternative for pressure calibration of large-volume high-pressure apparatus for Earth science applications.
机译:使用原位电方法和多砧设备,我们确定了高达20 GPa的氯化钠(NaCl)的熔融曲线,估计不确定度为+/- 40K。我们的结果与现有数据非常吻合最高6.5 GPa。在更高的压力下,该研究的熔融温度比使用金刚石-砧座电池(DAC)进行的实验研究的熔融温度高200 K,并且比使用分子动力学的理论研究的熔融温度(MD)低500K。 )。差异可能是由于DAC测量中的表面熔化(低估了熔化温度)以及MD计算中的过热(过度预测了熔化温度)引起的。使我们的结果适合Simon方程的产率(T / T-0)(4.5)=(P-P-0)/0.6 + 1,其中T和T-0分别是P和P-0的熔化温度, T-0 = 1073.6 K,T以K为单位,引脚为GPa。 Simon方程在不确定性范围内拟合了实验数据,因此可用于对熔解曲线进行插值。使用300 K NaCl的状态方程(EoS),将结果拟合为Kraut-Kennedy方程,形式为T / T-0 =(V-0-V)/V-0.4.37 + 1其中T(以K为单位)和T-0(= 1073.6 K)分别是V和V-0(0.0001 GPa)下的熔化温度。在高于14 GPa的压力下,实验数据偏离Kraut-Kennedy方程而趋向于较低温度,这可能是因为方程中忽略了Gruneisen参数的体积依赖性。类似于1.689中心点f(2中心点)Theta(2中心点)(0)(V-0 / V)(2(γ-1/ 3))的Gilvarry-Lindemann方程Tm为熔化提供了令人满意的拟合如果允许Gruneisen参数gamma = gamma(0)中心点(V / V-0)(q)的体积依赖性中的指数q偏离1,则NaCl曲线在0至19 GPa之间。鉴于已经确立了最高6.5 GPa的NaCl熔融曲线,因此监测NaCl的熔融为地球科学应用的大容量高压设备的压力校准提供了一种有效的替代方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号