首页> 外文期刊>The American mineralogist >Comparative planetary mineralogy: Pyroxene major- and minor-element chemistry and partitioning of vanadium between pyroxene and melt in planetary basalts
【24h】

Comparative planetary mineralogy: Pyroxene major- and minor-element chemistry and partitioning of vanadium between pyroxene and melt in planetary basalts

机译:行星矿物学比较:辉石的主要元素和次要元素化学以及钒在辉石和行星玄武岩中的熔体之间的分配

获取原文
获取原文并翻译 | 示例
           

摘要

Pyroxene grains from 14 basalt suites from the Earth, Moon, Mars, and Vesta were studied by electron- and ion-microprobe techniques. The results show that several elemental trends can be related to planetary parentage and crystallization conditions including paragenetic sequence and kinetics. Ferric iron (Fe3+) systematics show that terrestrial pyroxene is enriched in Fe3+ compared with pyroxene from Mars due to higher oxygen fugacity (f(O2)) conditions on the Earth that produce more Fe3+ in basaltic melts. Low f(O2) conditions on the Moon and Vesta result in very little or no Fe3+ in pyroxene from these bodies. Terrestrial pyroxenes contain more Na than those from Mars, yet martian plagioclase contains more Na than terrestrial. This difference is because terrestrial pyroxene contains more Fe3+ and thus the acmite component (NaFe3+Si2O6) is more important on Earth than Mars. Pyroxenes from the Moon and Vesta have very little Na, which can be attributed to the overall volatile-depleted nature of these bodies. All planetary pyroxenes show that Cr decreases with increasing fractionation because it is compatible in pyroxene, and in many basalts the crystallization of chromite depletes the melt in Cr3+. The Mn/Fe2+ systematics in pyroxene show distinct trends for the planetary bodies in the order Vesta > Mars > Earth > Moon. These Mn/Fe2+ trends are most likely affected by the volatility of Mn relative to Fe, and thus there is an increase in the Mn/Fe ratio with increasing distance from the Sun, except for the Moon, which likely lost Mn during its giant impact origin. These same trends have been documented for olivine from the different planets, and this parameter as measured in basaltic silicates is a robust fingerprint of planetary parentage. Vanadium partitioning into planetary pyroxene grains is affected by oxygen fugacity, the availability of charge-balancing elements, basaltic crystallization sequences, and kinetics. Partitioning of V into pyroxene at low f(O2) conditions (i.e., Moon and Vesta) is seen to increase as the charge-balancing cation Al-IV increases. Partitioning of V into pyroxene at relatively high f(O2) conditions (i.e., Earth and Mars) increases with increasing Na and Al-IV, which provide charge balance for incorporation of V4+. Because of the above complexities, a V-valence oxybarometer as measured in planetary pyroxene grains is not likely to be robust.
机译:通过电子和离子微探针技术研究了来自地球,月球,火星和维斯塔的14个玄武岩组中的辉石晶粒。结果表明,几种元素趋势可能与行星亲本和结晶条件有关,包括共生序列和动力学。三价铁(Fe3 +)系统显示,由于地球上较高的氧气逸度(f(O2))条件,在玄武质熔体中产生更多的Fe3 +,与火星的辉石相比,陆地的辉石富含Fe3 +。月球和Vesta上的低f(O2)条件导致这些物体的辉石中的Fe3 +很少或没有。陆地辉石比火星的Na含量更高,而火星斜长石比陆地的Na含量更高。造成这种差异的原因是,地球上的辉石含有更多的Fe3 +,因此在地球上,闪石成分(NaFe3 + Si2O6)比火星更重要。来自月球和维斯塔(Vesta)的辉石几乎没有Na,这可以归因于这些物体的整体挥发物耗尽特性。所有的行星辉石都表明Cr随着分馏的增加而降低,因为它与辉石相容,并且在许多玄武岩中,铬铁矿的结晶消耗了Cr3 +中的熔体。辉石中的Mn / Fe2 +系统表现出不同的趋势,即维斯塔>火星>地球>月球。这些Mn / Fe2 +趋势最有可能受到Mn相对于Fe的挥发性的影响,因此Mn / Fe比率随距太阳的距离增加而增加,除了月亮外,月亮可能会在其巨大撞击中失去Mn。起源。对于来自不同行星的橄榄石,也记录了这些相同的趋势,并且以玄武质硅酸盐测量的该参数是行星起源的可靠指纹。钒分配到行星式辉石颗粒中会受到氧逸度,电荷平衡元素的可用性,玄武岩晶化序列和动力学的影响。随着电荷平衡阳离子Al-IV的增加,V在低f(O2)条件下(即月球和Vesta)的划分为辉石。随着Na和Al-IV的增加,V在较高的f(O2)条件下(即地球和火星)将V分配为辉石的过程增加了,这为引入V4 +提供了电荷平衡。由于上述复杂性,在行星辉石颗粒中测得的V价氧压计不太可能是坚固的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号