...
首页> 外文期刊>The anatomical record: advances in integrative anatomy and evolutionary biology >Functional correlates of fiber architecture of the lateral caudal musculature in prehensile and nonprehensile tails of the platyrrhini (primates) and procyonidae (carnivora).
【24h】

Functional correlates of fiber architecture of the lateral caudal musculature in prehensile and nonprehensile tails of the platyrrhini (primates) and procyonidae (carnivora).

机译:功能性相关的侧尾肌的尾侧肌的结构,在白屈菌(灵长类)和procidaidae(肉食动物)的尾巴和非尾巴的尾巴中。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Prehensile-tailed platyrrhines (atelines and Cebus) and procyonids (Potos) display bony tail features that have been functionally and adaptively linked to their prehensile behaviors, particularly the need to resist relatively greater bending and torsional stresses associated with supporting their body weight during suspensory postures. We compared fiber architecture of the mm. intertransversarii caudae (ITC), the prime tail lateral flexors/rotators, in 40 individuals distributed across 8 platyrrhine and 2 procyonid genera, divided into one of two groups: prehensile or nonprehensile. We tested the hypothesis that prehensile-tailed taxa exhibit relatively greater physiologic cross-sectional areas (PCSAs) to maintain tail suspensory postures for extended periods. As an architectural trade-off of maximizing force, we also predicted prehensile-tailed taxa would exhibit relatively shorter, more pinnate fibers, and a lower mass to tetanic tension ratio (Mass/P(O)). Prehensile-tailed taxa have relatively higher PCSAs in all tail regions, indicating their capacity to generate relatively greater maximum muscle forces compared to nonprehensile-tailed taxa. Contrary to our predictions, there are no group differences in pinnation angles, fiber lengths or M/P(O) ratios. Therefore, the relatively greater prehensile PCSAs are driven largely by relative increase in muscle mass. These findings suggest that relatively greater ITC PCSAs can be functionally linked to the need for prehensile-tailed taxa to suspend and support their body weight during arboreal behaviors. Moreover, maximizing ITC force production may not come at the expense of muscle excursion/contraction velocity. One advantage of this architectural configuration is it facilitates suspension of the body while simultaneously maximizing tail contact with the substrate.
机译:尾巴有尾y(食蚁兽和Cebus)和突节类(波托虫)的骨尾特征在功能上和适应性上与它们的尾巴行为有关,特别是在悬吊姿势期间需要抵抗相对较大的弯曲和扭转压力以支撑体重。我们比较了毫米的光纤架构。 Intertransversarii caudae(ITC)是主要尾部外侧屈肌/肌腱,分布在40个个体中,分布在8个柏律和2个procyonid属中,分为两组。我们测试了这样的假设,即尾巴尾类群表现出相对较大的生理横截面积(PCSA),可以长时间保持尾部悬垂姿势。作为最大力量的结构折衷,我们还预测了长尾尾类群将显示出相对较短,更多的羽状纤维,以及较低的质量与破伤风张力比(Mass / P(O))。尾尾类群在所有尾巴区域都具有相对较高的PCSA,这表明与无尾尾类群相比,它们能产生相对更大的最大肌肉力量。与我们的预测相反,在品脱角,纤维长度或M / P(O)比方面没有组差异。因此,相对较大的多囊性PCSA很大程度上是由肌肉质量的相对增加所驱动。这些发现表明,相对较大的ITC PCSA可以在功能上与需要在树栖行为期间悬挂和支撑体重的尾尾类群联系起来。而且,最大化ITC力产生可能不会以肌肉偏移/收缩速度为代价。这种结构配置的一个优点是,它有利于身体的悬垂,同时使尾巴与基底的接触最大化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号