...
首页> 外文期刊>Tectonophysics: International Journal of Geotectonics and the Geology and Physics of the Interior of the Earth >Models of fracture lineaments - Joint swarms, fracture corridors and faults in crystalline rocks, and their genetic relations
【24h】

Models of fracture lineaments - Joint swarms, fracture corridors and faults in crystalline rocks, and their genetic relations

机译:断裂线的模型-节理群,裂隙通道和结晶岩断层及其成因关系

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Fracture lineaments in crystalline andmetamorphic rocks of southern Norway can be subdivided into joint swarms, fracture corridors and faults, depending on displacement, the fracture mode and patterns, and the presence of fault rocks. Their physical appearance as lineaments seen by remote sensing is not discernible, as they define km-long and narrow tabular zones of high fracture intensity. Intrinsically, fracture zonation becomes better expressed from joint swarms to fracture corridors and especially faults as a consequence of increasing accumulate strain. Joint swarms and fracture corridors commonly reveal a symmetric fracture zonation on both sides of its core, whereas inclined extensional faults tend to have asymmetric patterns with enhanced strain and a wider damage zone in the hangingwall. Fracture lineament can bemapped in subzones A-B (core),which are typically some cm up to some tens of meters wide. Common structural elements are fault rocks/shear zones, lenses, and a network of fractures oftenwith very high fracture frequency. Secondaryminerals are common. Outside this, subzones C-D (damage zone) are commonly 20-50-m wide with lower fracture intensity of lineament-parallel fracturing, defining the topographic boundary of the lineament. Mineralisation is rarer. The transitional subzone E of multi-orientation fractures defines the transition to the background fracture system. We propose a model for the classification and development of fracture lineaments, applying their architecture (intrinsic geometry, spatial fracture pattern and spatial distribution of fault rocks) as tools for the systematic description. This links fault growth processes and mechanisms that can be ascribed to strain hardening and softening scenarios in a model of fault architecture.
机译:挪威南部的晶体和变质岩中的断裂线可以细分为节理群,断裂带和断层,这取决于位移,断裂模式和样式以及断裂岩的存在。由于它们定义了高断裂强度的千米长且狭窄的表格区域,因此无法辨别它们的物理外观(通过遥感看到的线条)。从本质上讲,由于累积应变的增加,从关节群到断裂通道,尤其是断层,断裂带表现得更好。关节群和断裂走廊通常在其岩心的两侧都显示出对称的断裂带,而倾斜的伸展断层往往具有不对称的模式,具有增加的应变并在吊壁中具有更大的破坏区域。断裂线可以映射在A-B(核心)区域,该区域通常为几厘米到几十米宽。常见的结构要素是断层岩石/剪切带,透镜和通常具有很高断裂频率的裂缝网络。次要矿物质很常见。除此以外,分区C-D(损坏区)的宽度通常为20-50米,线裂平行裂缝的断裂强度较低,从而确定了线裂的地形边界。矿化较为罕见。多向裂缝的过渡子区域E定义了向背景裂缝系统的过渡。我们提出了一种裂缝线分类和发展的模型,将其构造(内部几何学,空间裂缝模式和断层岩的空间分布)作为系统描述的工具。这链接了故障增长过程和机制,这些过程和机制可以归因于故障体系结构模型中的应变硬化和软化场景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号