【24h】

Lithospheric structure of the central Himalaya from 3-D tomographic imaging

机译:从3-D层析成像成像看喜马拉雅山中部岩石圈结构

获取原文
获取原文并翻译 | 示例
           

摘要

The High Himalaya are one of the most spectacular consequences of the ongoing collision between India and Eurasia, yet the role that the lithosphere beneath them play in this collision is not well understood. To illuminate the influence of the Himalaya on collisional processes, we produced tomographic images of the subsurface beneath them from arrival times of P- and S-waves generated by 551 teleseisms and 1051 local/ regional events and recorded by the Himalayan–Nepal–Tibet Broadband Seismic Experiment (HIMNT) from 2001 to 2002. Compared to those in initial 1D models, the RMS P- and S-arrival time misfits in our final 3D model were reduced by as much as 46% (from 0.45 s to 0.24 s) and 38% (from 0.97 s to 0.6 s), respectively. Our results show strong crustal variations perpendicular to, but no significant lateral variation along, the trend of the High Himalaya within our study area. In the NS direction the crust thickens from about 60 km under the Lesser Himalaya to 70–80 km under the Tethys Himalaya. There is no localized crustal thickening beneath the High Himalaya. Wavespeeds and seismicity patterns beneath the Tethys Himalaya suggest that the middle crust (at 30–50 km depth) is ductile and are consistent with the presence of a mid-crustal reflector associated with the stronger gradients in the lower crust. Correlation between relocated earthquakes and the Xainza-Dinggye rift indicates that the rift is not cutting through the crust at the present time. Shear wave splitting from core phases indicates that the upper mantle beneath the Tethys Himalaya is nearly isotropic. The combination of isotropy and higher seismic wavespeed leads us to suggest that eclogites included in the lowermost crust and the uppermost mantle are responsible for the mid-crustal reflector under the Tethys Himalaya, as well as for a slightly high wavespeed anomaly just beneath the Moho. This interpretation is supported by the existence of granulitic eclogite in the Ama Drime Massif 50 km northeast of Mt. Everest.
机译:高喜马拉雅山是印度与欧亚大陆之间持续不断的碰撞所产生的最壮观的后果之一,但人们对在其下方的岩石圈在这场碰撞中所起的作用尚不甚了解。为了阐明喜马拉雅山对碰撞过程的影响,我们根据551个远震和1051个局部/区域事件产生的P波和S波的到达时间,制作了它们下面的地下断层图像,并由喜马拉雅–尼泊尔–西藏宽带记录2001年至2002年的地震实验(HIMNT)。与最初的1D模型相比,最终3D模型中的RMS P和S到达时间失配减少了46%(从0.45 s到0.24 s),并且38%(从0.97 s到0.6 s)。我们的研究结果表明,在我们研究区域内,喜马拉雅山高趋势垂直于强烈的地壳变化,但没有明显的横向变化。在北向,地壳的厚度从小喜马拉雅山下约60公里增至特提斯喜马拉雅山下70-80公里。高喜马拉雅山下没有局部的地壳增厚。特提斯喜马拉雅山下方的波速和地震活动模式表明,中地壳(深度30–50 km)具有延性,并且与中地壳反射器的存在相一致,该反射器与下地壳中较强的梯度相关。搬迁的地震与Xainza-Dinggye裂谷之间的相关性表明,目前该裂谷尚未穿透地壳。岩心相的剪切波分裂表明,特提斯喜马拉雅山下方的上地幔几乎各向同性。各向同性和较高的地震波速的结合使我们认为,最低的地壳和最高的地幔中包括的榴辉岩是特提斯喜马拉雅山下方的中地壳反射体,以及莫霍面以下的稍高的波速异常。这种解释得到了山东北50公里处的Ama Drime地块中花岗榴辉岩的支持。珠穆朗玛峰。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号