【24h】

Microcrack growth and healing in deformed calcite aggregates

机译:方解石聚集体的微裂纹生长和愈合

获取原文
获取原文并翻译 | 示例
       

摘要

Modelling of fluid flow in the Earth's crust depends on our understanding of the physical processes responsible for porosity-production and porosity-reduction. This study concerns the role of thermally-activated processes on the evolution of porosity and permeability in rock samples containing microcracks. Experimentally deformed Carrara marble and a synthetic marble were heat-treated at effective pressures of 50 and 150 MPa and temperatures up to 923 K with argon as pore fluid. In situ measurements of the connected porosity and the permeability during heat-treatment indicate a complicated evolution of porosity and permeability. During heating up to 600/700 K, the porosity changes very slowly with increase in temperature and time, decreasing by 0.01-0.02, while the permeability increases by an order of magnitude. At higher temperatures, the porosity reduction rate accelerates, and both the connected porosity and the permeability decrease with increasing temperature and time. The permeability is proportional to the cube of the connected porosity. Microstructural changes during heat-treatment of Carrara marble include (a) the replacement of the finely-crushed fragments within the intergranular damage zones by rounded or polyhedral grains 5-20 mum in diameter; and (b) the partial to complete healing of twin boundary cracks and tips/sub-branches of transgranular cracks. In the finer grain-size synthetic marble, heat-treatment blunts the tips of grain boundary cracks; partial healing of grain boundary cracks is associated with the formation of ridge-channel structures on many grain interfaces. The evolution of porosity, permeability and microstructure points to the roles of thermal cracking, plastic compaction, and diffusional crack healing in controlling fluid transport properties of cracked rocks at elevated temperature. Significantly, the porosity-permeability relationships during isostatic crack healing are very different from those associated with crack growth during deformation. (C) 2001 Elsevier Science B.V. All rights reserved. [References: 56]
机译:地壳中流体流动的模型取决于我们对负责孔隙产生和孔隙减少的物理过程的理解。这项研究涉及热活化过程对含微裂纹岩石样品中孔隙率和渗透率演变的作用。实验变形的卡拉拉大理石和合成大理石在50和150 MPa的有效压力和高达923 K的温度下以氩气为孔隙流体进行了热处理。热处理过程中连接孔隙率和渗透率的原位测量表明,孔隙率和渗透率的变化非常复杂。在加热到600/700 K的过程中,孔隙度随温度和时间的增加而非常缓慢地变化,降低了0.01-0.02,而渗透率却增加了一个数量级。在较高温度下,孔隙率降低速率加快,并且连通孔隙率和渗透率都随温度和时间的增加而降低。渗透率与连通孔隙的立方成正比。卡拉拉大理石热处理过程中的微观结构变化包括:(a)用直径为5-20微米的圆形或多面体晶粒代替晶间损伤区内的细碎碎片; (b)孪晶边界裂纹和经晶裂纹的尖端/子分支的部分或全部修复。在更细粒度的合成大理石中,热处理会钝化晶界裂纹的尖端。晶界裂纹的部分修复与许多晶粒界面上的脊形通道结构的形成有关。孔隙度,渗透率和微观结构的演变表明了热裂,塑性压实和扩散裂隙修复在控制高温下裂隙岩的流体输运特性中的作用。值得注意的是,等静裂纹修复过程中的孔隙率-渗透率关系与变形过程中与裂纹扩展有关的孔隙率-渗透率关系非常不同。 (C)2001 Elsevier Science B.V.保留所有权利。 [参考:56]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号