...
首页> 外文期刊>Technology and health care: official journal of the European Society for Engineering and Medicine >A mathematical model of the mechanical link between shortening of the cardiomyocytes and systolic deformation of the left ventricular myocardium
【24h】

A mathematical model of the mechanical link between shortening of the cardiomyocytes and systolic deformation of the left ventricular myocardium

机译:心肌细胞缩短与左室心肌收缩变形之间机械联系的数学模型

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Background: Left ventricular myocytes are arranged in a complex three-dimensional mesh. Since all myocytes contract approximately to the same degree, mechanisms must exist to enable force transfer from each of these onto the framework as a whole, despite the transmural differences in deformation strain. This process has hitherto not been clarified in detail. Objective: To present a geometrical model that establishes a mechanical link between the three-dimensional architecture and the function of the left ventricular myocardium. Methods: The left ventricular equator was modeled as a cylindrical tube of deformable but incompressible material, composed of virtual cardiomyocytes with known diastolic helical and transmural angles. By imposing reference circumferential, longitudinal, and torsional strains onto the model, we created a three-dimensional deformation field to calculate passive shortening of the myocyte surrogates. We tested two diastolic architectures: 1) a simple model with longitudinal myocyte surrogates in the endo-and epicardium, and circular ones in the midwall, and 2) a more accurate architecture, with progressive helical angle distribution varying from-60° in the epicardium to 60° in the endocardium, with or without torsion and transmural cardiomyocyte angulation. Results: The simple model caused great transmural unevenness in cardiomyocyte shortening; longitudinal surrogates shortened by 15% at all depths equal to the imposed longitudinal strain, whereas circular surrogates exhibited a maximum shortening of 23.0%. The accurate model exhibited a smooth transmural distribution of cardiomyocyte shortening, with a mean (range) of 17.0 (13.2-20.8)%. Torsion caused a shortening of 17.0 (15.2-18.9)% and transmural angulation caused a shortening of 15.2 (12.4-18.2)%. Combining the effects of transmural angulation and torsion caused a change of 15.2 (13.2-16.5)%. Conclusion: A continuous transmural distribution of the helical angle is obligatory for smooth shortening of the cardiomyocytes, but a combination of torsional and transmural angulation changes is necessary to execute systolic mural thickening whilst keeping shortening of the cardiomyocytes within its physiological range.
机译:背景:左心室肌细胞排列在复杂的三维网格中。由于所有心肌细胞的收缩程度大致相同,因此尽管存在变形应变的跨壁差异,但仍必须存在一种机制,使它们能够从其中的每个力转移到整个框架上。迄今为止,该过程尚未详细阐明。目的:提出一种几何模型,该模型建立三维结构与左心室心肌功能之间的机械联系。方法:将左室赤道建模为可变形但不可压缩的材料的圆柱形管,该管由具有已知舒张螺旋角和透壁角的虚拟心肌细胞组成。通过在模型上施加参考周向,纵向和扭转应变,我们创建了三维变形场来计算心肌替代物的被动缩短。我们测试了两种舒张压结构:1)一个简单的模型,其内膜和心外膜为纵向肌细胞替代物,中壁为圆形; 2)更精确的结构,渐进式螺旋角分布在心外膜中为60°在心内膜中旋转至60°,有无扭转和透壁心肌细胞成角度。结果:简单的模型导致心肌细胞缩短而严重的透壁不均匀;在所有深度处,纵向替代物缩短了15%,等于施加的纵向应变,而圆形替代物最大缩短了23.0%。准确的模型显示出平滑的心肌细胞缩短的透壁分布,平均(范围)为17.0(13.2-20.8)%。扭转导致缩短17.0(15.2-18.9)%,而透壁成角度引起缩短15.2(12.4-18.2)%。透壁成角度和扭转的综合作用导致变化15.2(13.2-16.5)%。结论:螺旋角的连续透壁分布对于平滑缩短心肌细胞是必不可少的,但是扭转和透壁角度改变的组合对于执行收缩期壁增厚同时将心肌细胞的缩短保持在其生理范围内是必要的。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号