...
首页> 外文期刊>Talanta: The International Journal of Pure and Applied Analytical Chemistry >Energy scavenging for long-term deployable wireless sensor networks
【24h】

Energy scavenging for long-term deployable wireless sensor networks

机译:长期可部署无线传感器网络的能量节省

获取原文
获取原文并翻译 | 示例
           

摘要

The coining decade will see the rapid emergence of low cost, intelligent, wireless sensors and their widespread deployment throughout our environment. While wearable systems will operate over communications ranges of less than a meter, building management systems will operate with inter-node communications ranges of the order of meters to tens of meters and remote environmental monitoring systems will require communications systems and associated energy systems that will allow reliable operation over kilometers. Autonomous power should allow wireless sensor nodes to operate in a "deploy and forget" mode. The use of rechargeable battery technology is problematic due to battery lifetime issues related to node power budget, battery self-discharge, number of recharge cycles and long-term environmental impact. Duty cycling of wireless sensor nodes with long "SLEEP" times minimises energy usage. A case study of a multi-sensor, wireless, building management system operating using the Zigbee protocol demonstrates that, even with a 1 min cycle time for an 864 ms "ACTIVE" mode, the sensor module is already in SLEEP mode for almost 99% of the time. For a 20-min cycle time, the energy utilisation in SLEEP mode exceeds the ACTIVE mode energy by almost a factor of three and thus dominates the module energy utilisation thereby providing the ultimate limit to the power system lifetime. Energy harvesting techniques can deliver energy densities of 7.5 mW/cm(2) from outdoor solar, 100 mW/cm(2) from indoor lighting, 1 00 mW/cm(3) from vibrational energy and 60 mW/cm(2) from thermal energy typically found in a building environment. A truly autonomous, "deploy and forget" battery-less system can be achieved by scaling the energy harvesting system to provide all the system energy needs. In the building management case study discussed, for duty cycles of less than 0.07% (i.e. in ACTIVE mode for 0.864s every 20 min), energy harvester device dimensions of approximately 2 cm on a side would be sufficient to supply the complete wireless sensor node energy. Key research challenges to be addressed to deliver future, remote, wireless, chemo-biosensing systems include the development of low cost, low-power sensors, miniaturised fluidic transport systems, anti-bio-fouling sensor surfaces, sensor calibration, reliable and robust system packaging, as well as associated energy delivery systems and energy budget management. (c) 2008 Published by Elsevier B.V.
机译:随之而来的十年将见证低成本,智能,无线传感器的迅速兴起,以及它们在我们整个环境中的广泛部署。虽然可穿戴系统将在小于一米的通信范围内运行,但是建筑物管理系统将在数米至数十米的节点间通信范围内运行,而远程环境监控系统将需要通信系统和相关的能源系统,以允许数千米的可靠运行。自主电源应允许无线传感器节点以“部署并忘记”模式运行。由于与节点功率预算,电池自放电,充电周期数和长期环境影响有关的电池寿命问题,可充电电池技术的使用存在问题。长“ SLEEP”时间的无线传感器节点的占空比循环可最大程度地减少能耗。对使用Zigbee协议运行的多传感器无线建筑管理系统的案例研究表明,即使在864毫秒“活动”模式下循环时间为1分钟,传感器模块也已经处于休眠模式的时间接近99%。的时间。在20分钟的循环时间内,休眠模式下的能量利用率几乎比活动模式下的能量高出三分之二,因此控制了模块的能量利用率,从而最终限制了电源系统的使用寿命。能量收集技术可以从室外太阳能提供7.5 mW / cm(2),从室内照明提供100 mW / cm(2),从振动能量提供1 00 mW / cm(3)和从60 mW / cm(2)提供能量密度通常在建筑环境中发现的热能。通过扩展能量收集系统以提供所有系统能量需求,可以实现真正自治的“部署与忘记”无电池系统。在讨论的建筑物管理案例研究中,对于小于0.07%的占空比(即,每20分钟在“活动”模式下持续0.864 s),侧面大约2 cm的能量收集器设备尺寸足以为整个无线传感器节点供电能源。提供未来的远程,无线,化学生物传感系统需要解决的关键研究挑战包括开发低成本,低功率传感器,小型化流体传输系统,抗生物结垢的传感器表面,传感器校准,可靠而强大的系统包装以及相关的能源输送系统和能源预算管理。 (c)2008年由Elsevier B.V.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号