...
首页> 外文期刊>Chemistry: A European journal >Carbon dioxide hydrogenation catalyzed by a ruthenium dihydride: A DFT and high-pressure spectroscopic investigation
【24h】

Carbon dioxide hydrogenation catalyzed by a ruthenium dihydride: A DFT and high-pressure spectroscopic investigation

机译:二氢化钌催化的二氧化碳加氢:DFT和高压光谱研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Reaction pathways during CO2 hydrogenation catalyzed by the Ru dihydride complex [Ru(dmpe)(2)H-2] (dmpe = Me2PCH2CH2PMe2) have been studied by DFT calculations and by IR and NMR spectroscopy up to 420 bar in toluene at 300 K. CO2 and formic acid readily inserted into or reacted with the complex to form formates. Two formate complexes, cis[Ru(dmpe)(2)(OCHO)(2)] and trans-[Ru(dmpe)(2)H(OCHO)], were formed at low CO2 pressure (< 5 bar). The latter occurred exclusively when formic acid reacted with the complex. A RuH center dot center dot center dot-HOCHO dihydrogen-bonded complex of the trans form was identified at H-2 partial pressure higher than about 50 bar. The trans form of the complex is suggested to play a pivotal role in the reaction pathway. Potential-energy profiles along possible reaction paths have been investigated by static DFT calculations, and lower activation-energy profiles via the trans route were confirmed. The H-2 insertion has been identified as the rate-limiting step of the overall reaction. The high energy of the transition state for H-2 insertion is attributed to the elongated Ru-O bond. The H-2 insertion and the subsequent formation of formic acid proceed via Ru(eta(2)-H-2)-like complexes, in which apparently formate ion and Ru+ or Ru(eta(2)-H-2)(+) interact. The bond properties of involved Ru complexes were characterized by natural bond orbital analysis, and the highly ionic characters of various complexes and transition states are shown. The stability of the formate ion near the Ru center likely plays a decisive role for catalytic activity. Removal of formic acid from the dihydrogen-bonded complex (RuH center dot center dot center dot HO-CHO) seems to be crucial for catalytic efficiency, since formic acid can easily react with the complex to regenerate the original formate complex. Important aspects for the design of highly active catalytic systems are discussed.
机译:通过DFT计算以及在300 K下甲苯中高达420 bar的IR和NMR光谱研究了Ru二氢配合物[Ru(dmpe)(2)H-2](dmpe = Me2PCH2CH2PMe2)催化的CO2加氢反应过程。 CO2和甲酸容易插入配合物中或与配合物反应形成甲酸酯。在低CO2压力(<5 bar)下形成了两个甲酸盐配合物,顺式[Ru(dmpe)(2)(OCHO)(2)]和反式[Ru(dmpe)(2)H(OCHO)]。后者仅在甲酸与络合物反应时发生。在高于约50bar的H-2分压下鉴定出反式的RuH中心点中心点中心点-HOCHO二氢键合的配合物。建议该复合物的反式在反应途径中起关键作用。已通过静态DFT计算研究了沿着可能的反应路径的势能分布,并确认了通过反式途径产生的较低的活化能分布。 H-2插入已被确定为整个反应的限速步骤。 H-2插入的过渡态的高能量归因于细长的Ru-O键。 H-2插入和随后形成的甲酸通过Ru(eta(2)-H-2)状复合物进行,其中明显有甲酸根离子和Ru +或Ru(eta(2)-H-2)(+ ) 相互作用。通过自然键轨道分析表征了所涉及的Ru配合物的键性质,并显示了各种配合物的高离子特征和过渡态。钌中心附近甲酸酯离子的稳定性可能对催化活性起决定性作用。从甲酸二氢键络合物(RuH中心点中心点中心点中心点HO-CHO)中除去甲酸似乎对催化效率至关重要,因为甲酸可以很容易地与该配合物反应以再生原始的甲酸配合物。讨论了高活性催化体系设计的重要方面。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号