首页> 外文期刊>Polymer: The International Journal for the Science and Technology of Polymers >Sub-micron dispersed-phase particle size in polymer blends: overcoming the taylor limit via solid-state shear pulverization
【24h】

Sub-micron dispersed-phase particle size in polymer blends: overcoming the taylor limit via solid-state shear pulverization

机译:聚合物共混物中的亚微米分散相粒度:通过固态剪切粉碎技术克服了泰勒极限

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

A comparison was made of the fineness of dispersion in immiscible polymer blends achieved by a continuous mechanical alloying technique, solid-state shear pulverization, relative to that achieved by melt mixing. Two polymer blend systems were investigated. A polystyrene (PS)/polyethylene (PE) wax blend was studied because, based on a classic analysis by G.I. Taylor, melt mixing was expected to yield a number-average dispersed-phase domain size, D_n, well above 1 mum. A PS/high density polyethylene (HDPE) blend was also studied because it was known to produce a sub-micron number-average dispersed-phase particle size when mixed by twin-screw extrusion. In the case of the PS/PE wax blend at compositions ranging from 1 to 15 wt% polyethylene wax, pulverization resulted in nearly identical D_n values (typical value of 0.7 mum) independent of minor-phase content; these D_n values were an order of magnitude smaller than the anticipated Taylor limit for melt-mixed blends. In contrast, PS/PE wax blends made by batch, intensive melt mixing yielded D_n values between approx 3 mum at at both 1 and 5 wt% minor-phase content and 17.5 mum at 15 wt% minor-phase content. The increase in D_n with increasing dispersed-phase content in the melt-mixed blend is a consequence of coalescence present during melt processing; such effects are disallowed in the pulverization process occurring in the solid state. Scanning electron microscopy of a 95/5 wt% PS/HDPE blend provided D_n values of 500 and 270 nm in the twin-screw extruded and pulverized samples, respectively. Fractionated crystallization studies further corroborated the ability of pulverization to result in a finer, nanoscopic dispersion of the minor phase as compared to extrusion.
机译:比较了通过连续机械合金化技术(固态剪切粉化)相对于通过熔融混合获得的在不混溶的聚合物共混物中的分散度细度。研究了两种聚合物共混体系。对聚苯乙烯(PS)/聚乙烯(PE)蜡共混物的研究是因为基于G.I.预计泰勒熔融混合将产生数均分散相畴尺寸D_n,远大于1μm。还研究了PS /高密度聚乙烯(HDPE)共混物,因为已知通过双螺杆挤出混合时会产生亚微米数均分散相粒径。在PS / PE蜡共混物的聚乙烯蜡含量为1至15 wt%的情况下,粉碎会产生几乎相同的D_n值(典型值为0.7微米),而与次要相含量无关。这些D_n值比熔融混合的混合物的预期泰勒极限小一个数量级。相比之下,通过分批,强烈的熔融混合制备的PS / PE蜡共混物,在1%和5 wt%的次相含量下产生的D_n值大约在3 mum和在15 wt%的次相含量下达到17.5 md。 D_n随着熔体混合共混物中分散相含量的增加而增加,这是在熔体加工过程中出现聚结的结果。在固态发生的粉碎过程中不允许出现这种效果。 95/5 wt%PS / HDPE共混物的扫描电子显微镜在双螺杆挤出和粉碎的样品中分别提供500 nm和270 nm的D_n值。分馏结晶研究进一步证实了与挤出相比,粉碎能使次要相形成更细的,纳米级的分散体。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号