...
首页> 外文期刊>Chemistry: A European journal >Mechanistic Exploration of Intramolecular Aminodiene Hydroamination/Cyclisation Mediated by Constrained Geometry Organoactinide Complexes: A DFT Study
【24h】

Mechanistic Exploration of Intramolecular Aminodiene Hydroamination/Cyclisation Mediated by Constrained Geometry Organoactinide Complexes: A DFT Study

机译:约束几何有机act系配合物介导的分子内氨二烯加氢/环化的机理探索:DFT研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The present computational mechanistic study explores comprehensively the organoactinide-mediated intramolecular hydroamination/cyclisation (IHC) of aminodienes by employing a reliable DFT method. All the steps of a plausible catalytic reaction course have been scrutinised for the IHC of (4E,6)-heptadienylamine 1t by [(CGC)Th(NMe2)(2)] precatalyst 2 (CGC = [Me2Si(eta(5)-Me4C5)(tBuN)](2-)). For each of the relevant elementary steps the most accessible pathway has been identified from a multitude of mechanistic possibilities. The operative mechanism involves rapid substrate association/dissociation equilibria for the 3t-S resting state and also for azacyclic intermediates 4a, 4s, easily accessible and reversible exocyclic ring closure, supposedly facile isomerisation of the azacycle's butenyl tether prior to turnover-limiting protonolysis. The following aspects are in support of this scenario: 1) the derived rate law is consistent with the experimentally obtained empirical rate law; 2) the accessed barrier for turnover-limiting protonolysis does agree remarkably well with observed performance data; 3) the ring-tether double-bond selectivity is consistently elucidated, which led to predict the product distribution correctly. This study provides a computationally substantiated rationale for observed activity and selectivity data. Steric demands at the CGC framework appear to be an efficient means for modulating both performance and ring-tether double-bond selectivity. The careful comparison of (CGC)4f-element and (CGC)5f-element catalysts revealed that aminodiene IHC mediated by organoactinides and organolanthanides proceeds through a similar mechanistic scenario. However, cyclisation and protonolysis steps, in particular, feature a markedly different reactivity pattern for the two catalyst classes, owing to enhanced bond covalency of early actinides when compared to lanthanides.
机译:目前的计算机理研究通过采用可靠的DFT方法,全面探索了有机二亚胺介导的氨基二烯分子内加氢/环化反应(IHC)。已通过[(CGC)Th(NMe2)(2)]预催化剂2(CGC = [Me2Si(eta(5)-)对(4E,6)-庚二烯胺1t的IHC进行了详细的催化反应过程的所有步骤Me4C5)(tBuN)](2-))。对于每个相关的基本步骤,已从多种机械可能性中确定了最可访问的途径。该操作机制涉及3t-S静止状态以及氮杂环中间体4a,4s的快速底物缔合/解离平衡,易于接近且可逆的环外环闭合,据说在周转限制质子分解之前氮杂环的丁烯系链容易异构化。以下方面支持这种情况:1)导出的利率定律与实验获得的经验利率定律一致; 2)限制营业额的质子分解的障碍确实与观察到的性能数据非常吻合; 3)始终阐明了环链双键的选择性,从而正确预测了产物的分布。这项研究为观察到的活性和选择性数据提供了计算上的依据。 CGC框架对立体的需求似乎是调节性能和环链双键选择性的有效手段。对(CGC)4f元素和(CGC)5f元素催化剂的仔细比较表明,由有机act系元素和有机镧系元素介导的氨基二烯IHC通过相似的机理进行。但是,由于与act镧系元素相比,早期act系元素的键合价提高,因此环化和质子分解步骤尤其对两种催化剂具有明显不同的反应模式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号