首页> 外文期刊>Ultrasonics >Novel characterization method for fibrous materials using non-contact acoustics: Material properties revealed by ultrasonic perturbations
【24h】

Novel characterization method for fibrous materials using non-contact acoustics: Material properties revealed by ultrasonic perturbations

机译:使用非接触声学的纤维材料新型表征方法:超声扰动揭示的材料特性

获取原文
获取原文并翻译 | 示例
           

摘要

Fibrous materials are unique hierarchical complex structures exhibiting a range of mechanical, thermal, optical and electrical properties. The inherent discontinuity at micro and macro levels, heterogeneity and multi-scale porosity differentiates fibrous materials from other engineering materials that are typically continuum in nature. These structural complexities greatly influence the techniques and modalities that can be applied to characterize fibrous materials. Typically, the material response to an applied external force is measured and used as a characteristic number of the specimen. In general, a range of equipment is in use to obtain these numbers to signify the material properties. Nevertheless, obtaining these numbers for materials like fiber ensembles is often time consuming, destructive, and requires multiple modalities. It is hypothesized that the material response to an applied acoustic frequency would provide a robust alternative characterization mode for rapid and non-destructive material analysis. This research proposes applying air-coupled ultrasonic acoustics to characterize fibrous materials. Ultrasonic frequency waves transmitted through fibrous assemblies were feature extracted to understand the correlation between the applied frequency and the material properties. Mechanical and thermal characteristics were analyzed using ultrasonic features such as time of flight, signal velocity, power and the rate of attenuation of signal amplitude. Subsequently, these temporal and spectral characteristics were mapped with the standard low-stress mechanical and thermal properties via an empirical artificial intelligence engine. A high correlation of >0.92 (S.D. 0.06) was observed between the ultrasonic features and the standard measurements. The proposed ultrasonic technique can be used toward rapid characterization of dynamic behavior of flexible fibrous assemblies. (C) 2014 Elsevier B.V. All rights reserved.
机译:纤维材料是独特的分层复杂结构,具有多种机械,热,光学和电性能。微观和宏观水平的固有不连续性,非均质性和多尺度孔隙度将纤维材料与其他通常本质上是连续的工程材料区分开来。这些结构上的复杂性极大地影响了可用于表征纤维材料的技术和形式。通常,测量材料对施加的外力的响应并将其用作样品的特征数。通常,使用一系列设备来获得这些数字以表示材料性能。然而,获得诸如纤维集合体的材料的这些数量通常是费时,破坏性的,并且需要多种形式。假设材料对所施加声频的响应将为快速且无损的材料分析提供可靠的替代表征模式。这项研究提出应用空气耦合超声声学来表征纤维材料。提取通过纤维组件传输的超声波,以了解施加频率与材料性能之间的相关性。机械和热特性使用超声波特性进行分析,例如飞行时间,信号速度,功率和信号幅度衰减率。随后,通过经验人工智能引擎将这些时间和光谱特性与标准的低应力机械和热特性进行映射。在超声波特征和标准测量值之间观察到> 0.92(S.D. 0.06)的高度相关性。所提出的超声技术可用于快速表征柔性纤维组件的动态行为。 (C)2014 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号