...
首页> 外文期刊>Ultrasonics >Longitudinal wave propagation in multi cylindrical viscoelastic matching layers of airborne ultrasonic transducer: New method to consider the matching layer's diameter (frequency <100 kHz)
【24h】

Longitudinal wave propagation in multi cylindrical viscoelastic matching layers of airborne ultrasonic transducer: New method to consider the matching layer's diameter (frequency <100 kHz)

机译:机载超声换能器多圆柱粘弹性匹配层中的纵向波传播:考虑匹配层直径(频率<100 kHz)的新方法

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Wave propagation in viscoelastic disk layers is encountered in many applications including studies of airborne ultrasonic transducers. For viscoelastic materials, both material and geometric dispersion are possible when the diameter of the matching layer is of the same order as the wavelength. Lateral motions of the matching layer(s) that result from the Poisson effect are accounted by using a new concept called the "effective-density". A new wave equation is derived for both metallic and non-metallic (polymeric) materials, usually employed for the matching layers of airborne ultrasonic transducer. The material properties are modeled by using the Kelvin model for metals and Linear Solid Standard model for non-metallic (polymeric) matching layers. The utilized model of the material of the matching layers has influence on amount and trend of variation in speed ratio. In this regard, 60% reduction in speed ratio is observed for Kelvin model for aluminum with diameter of 80 mm at 100 kHz while for a similar diameter but Standard Linear Model, the speed ratio increase to twice value at 15 kHz, and then reduced until 70% at 67 kHz for Polypropylene. The new wave theory simplifies to the one-dimensional solution for waves in metallic or polymeric matching layers if the Poisson ratio is set to zero. The predictions simplify to Love's equation for stress waves in elastic disks when loss term is removed from equations for both models. Afterwards, the new wave theory is employed to determine the airborne ultrasonic matching layers to maximize the energy transmission to the air. The optimal matching layers are determined by using genetic algorithm theory for 1, 2 and 3 airborne matching layers. It has been shown that 1-D equation is useless at frequencies less than 100 kHz and the effect of diameter of the matching layers must be considered to determine the acoustic impedances (matching layers) to design airborne ultrasonic transducers.
机译:粘弹性磁盘层中的波传播在许多应用中都遇到过,包括对机载超声换能器的研究。对于粘弹性材料,当匹配层的直径与波长相同数量级时,材料和几何色散都是可能的。泊松效应引起的匹配层的横向运动是通过使用称为“有效密度”的新概念来解决的。对于金属和非金属(聚合)材料,都得出了一个新的波动方程,通常用于机载超声换能器的匹配层。通过使用金属的Kelvin模型和非金属(聚合物)匹配层的线性固体标准模型对材料属性进行建模。匹配层材料的使用模型对速比的变化量和趋势有影响。在这方面,对于直径为80 mm的铝,在100 kHz时,开尔文模型的速度比降低了60%,而对于直径相似但标准线性模型的铝,在15 kHz时,速度比增加到两倍,然后降低直到聚丙烯在67 kHz时为70%。如果泊松比设置为零,则新波理论可简化为金属或聚合物匹配层中波的一维解。当从两个模型的方程中减去损失项时,这些预测将简化为用于弹性磁盘中应力波的Love方程。之后,采用新的波理论来确定机载超声匹配层,以最大程度地将能量传输到空气。最优匹配层是使用遗传算法理论确定1、2和3个机载匹配层的。已经表明,在小于100 kHz的频率下,一维方程是无用的,必须考虑匹配层直径的影响来确定声阻抗(匹配层),以设计航空超声换能器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号