...
首页> 外文期刊>Ultrasonics >Optimizing the electrode size of circular bimorph plates with different boundary conditions for maximum deflection of piezoelectric micromachined ultrasonic transducers
【24h】

Optimizing the electrode size of circular bimorph plates with different boundary conditions for maximum deflection of piezoelectric micromachined ultrasonic transducers

机译:优化具有不同边界条件的圆形双压电晶片的电极尺寸,以最大程度地偏转压电微机械超声换能器

获取原文
获取原文并翻译 | 示例

摘要

The effect of plate electrode area on the deflection of a symmetric circular bimorph piezoelectric micromachined ultrasonic transducer (pMUT) with clamped and simply supported boundary conditions was studied for the first time. Distinct plate displacement shape functions were defined for the regions underneath and outside the active electrodes. The plate shape functions were solved analytically using classic plate theory in conjunction with the external boundary conditions and the internal ones between the two regions in order to calculate the exact plate displacement under both external voltage stimulus and acoustic pressure. The model was used to study the effect of the electrode area on the overall plate deflection per unit input voltage such that the electromechanical coupling is optimized. While the center plate deflection increased monotonically with the electrode area for a simply supported plate, it followed a parabolic shape for a clamped one with a maximum deflection when the electrode radius covered 60% of the total plate radius. The simply supported plate exhibited four times the plate deflection capability of its clamped counterpart, when both are operating at their optimal electrode size. Both an experimental clamped bimorph aluminum nitride (AlN) pMUT, recently reported in the literature, and Finite Element Modeling (FEM) were used to verify the developed model. The theoretical model predicted a static displacement per unit voltage of 10.9 nm/V and a resonant frequency of 196.5 kHz, which were in excellent agreement with the FEM results of 10.32 nm/V and 198.5 kHz, respectively. The modeling data matched well with the experimental measurements and the error ranged from 2.7-22% due to process variations across the wafer. As such, the developed model can be used to design more sensitive pMUTs or extract the flexural piezoelectric coefficient using piezoelectrically actuated circular plates.
机译:首次研究了板电极面积对具有固定边界条件的对称圆双压电晶片压电微机械超声换能器(pMUT)挠度的影响。针对有源电极下方和外部的区域定义了不同的板位移形状函数。使用经典板理论,结合外部边界条件和两个区域之间的内部条件,通过解析方法求解了板的形状函数,以便计算在外部电压刺激和声压作用下的精确板位移。该模型用于研究电极面积对每单位输入电压总板偏转的影响,从而优化了机电耦合。尽管中心板的挠度随简单支撑板的电极面积单调增加,但当电极半径占板总半径的60%时,中心板的挠度呈抛物线形,从而获得最大挠度。当两个均以最佳电极尺寸工作时,简单支撑的板的挠曲能力是其夹紧的对应板的四倍。最近在文献中报道的一种实验性钳位双晶氮化铝(AlN)pMUT和有限元建模(FEM)均用于验证开发的模型。理论模型预测的单位电压静态位移为10.9 nm / V,谐振频率为196.5 kHz,这与FEM结果分别为10.32 nm / V和198.5 kHz极为吻合。建模数据与实验测量值非常吻合,由于晶圆上的工艺差异,误差范围为2.7-22%。这样,开发的模型可用于设计更灵敏的pMUT或使用压电驱动的圆板提取挠曲压电系数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号