首页> 外文期刊>Quarterly Journal of the Royal Meteorological Society >Massively parallel solvers for elliptic partial differential equations in numerical weather and climate prediction
【24h】

Massively parallel solvers for elliptic partial differential equations in numerical weather and climate prediction

机译:数值天气和气候预测中椭圆偏微分方程的大规模并行求解器

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The demand for substantial increases in the spatial resolution of global weather and climate prediction models makes it necessary to use numerically efficient and highly scalable algorithms to solve the equations of large-scale atmospheric fluid dynamics. For stability and efficiency reasons, several of the operational forecasting centres, in particular the Met Office and the European Centre for Medium-Range Weather Forecasts (ECMWF) in the UK, use semi-implicit semi-Lagrangian time-stepping in the dynamical core of the model. The additional burden with this approach is that a three-dimensional elliptic partial differential equation (PDE) for the pressure correction has to be solved at every model time step and this often constitutes a significant proportion of the time spent in the dynamical core. In global models, this PDE must be solved in a thin spherical shell. To run within tight operational time-scales, the solver has to be parallelized and there seems to be a (perceived) misconception that elliptic solvers do not scale to large processor counts and hence implicit time-stepping cannot be used in very high-resolution global models. After reviewing several methods for solving the elliptic PDE for the pressure correction and their application in atmospheric models, we demonstrate the performance and very good scalability of Krylov subspace solvers and multigrid algorithms for a representative model equation with more than 10(10) unknowns on 65 536 cores on the High-End Computing Terascale Resource (HECToR), the UK's national supercomputer. For this, we tested and optimized solvers from two existing numerical libraries (the Distributed and Unified Numerics Environment (DUNE) and Parallel High Performance Preconditioners (hypre)) and implemented both a conjugate gradient solver and a geometric multigrid algorithm based on a tensor-product approach, which exploits the strong vertical anisotropy of the discretized equation. We study both weak and strong scalability and compare the absolute solution times for all methods; in contrast to one-level methods, the multigrid solver is robust with respect to parameter variations.
机译:对全球天气和气候预测模型的空间分辨率的大幅提高的需求使得有必要使用数值高效且高度可扩展的算法来求解大规模大气流体动力学方程。出于稳定性和效率方面的考虑,一些运营预报中心,特别是英国气象局和欧洲中距离天气预报中心(ECMWF),在气象预报的动态核心中使用半隐式半拉格朗日时间步长该模型。这种方法的额外负担是,必须在每个模型时间步长求解用于压力校正的三维椭圆偏微分方程(PDE),这通常占动力核心所用时间的很大一部分。在全局模型中,必须在薄的球形外壳中求解此PDE。为了在严格的操作时间范围内运行,求解器必须并行化,并且似乎存在一个(可感知的)误解,即椭圆求解器无法扩展到较大的处理器数量,因此无法在非常高分辨率的全局变量中使用隐式时间步长楷模。在回顾了几种解决椭圆PDE压力校正的方法及其在大气模型中的应用后,我们在65上针对未知数超过10(10)的代表性模型方程论证了Krylov子空间求解器和多网格算法的性能和非常好的可扩展性英国国家超级计算机高端计算Terascale资源(HECToR)上的536个内核。为此,我们从两个现有的数值库(分布式和统一数值环境(DUNE)和并行高性能预处理器(hypre))中测试和优化了求解器,并基于张量积实现了共轭梯度求解器和几何多重网格算法这种方法利用了离散方程的强垂直各向异性。我们研究了弱和强可伸缩性,并比较了所有方法的绝对求解时间。与一级方法相比,多网格求解器在参数变化方面具有鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号