...
首页> 外文期刊>Quarterly Journal of the Royal Meteorological Society >Impact of non-hydrostatic effects and trapped lee waves on mountain-wave drag in directionally sheared flow
【24h】

Impact of non-hydrostatic effects and trapped lee waves on mountain-wave drag in directionally sheared flow

机译:非静水效应和被困的Lee波对定向剪切流中山波阻力的影响

获取原文
获取原文并翻译 | 示例
           

摘要

The orographic gravity-wave drag produced in flow over an axisymmetric mountain when both vertical wind shear and non-hydrostatic effects are important was calculated using a semi-analytical two-layer linear model, including unidirectional or directional constant wind shear in a layer near the surface, above which the wind is constant. The drag behaviour is determined by partial wave reflection at the shear discontinuity, wave absorption at critical levels (both of which exist in hydrostatic flow) and total wave reflection at levels where the waves become evanescent (an intrinsically non-hydrostatic effect), which produces resonant trapped lee-wave modes. As a result of constructive or destructive wave interference, the drag oscillates with the thickness of the constant-shear layer and the Richardson number within it (Ri), generally decreasing at low Ri and when the flow is strongly non-hydrostatic. Critical-level absorption, which increases with the angle spanned by the wind velocity in the constant-shear layer, shields the surface from reflected waves, keeping the drag closer to its hydrostatic limit. Although, for the parameter range considered here, the drag seldom exceeds this limit, a substantial drag fraction may be produced by trapped lee waves, particularly when the flow is strongly non-hydrostatic, the lower layer is thick and Ri is relatively high. In directionally sheared flows with Ri=O(1), the drag may be misaligned with the surface wind in a direction opposite to the shear, a behaviour that is due totally to non-trapped waves. The trapped lee-wave drag, the reaction force of which is felt on the atmosphere at low levels, may therefore have a distinctly different direction from the drag associated with vertically propagating waves, which acts on the atmosphere at higher levels.
机译:使用半解析两层线性模型,包括单向或定向恒定风切变,在轴对称山上的垂直风切变和非静水作用都很重要时,在地形上产生的地形重力波阻力被计算出来。表面,风在其上面是恒定的。阻力行为取决于剪切不连续处的部分波反射,临界水平处的波吸收(两者都存在于静水流中)和波消失后的水平处的全波反射(本质上是非静水效应)。共振陷波模式。由于相长波或相消波的干扰,阻力随恒定剪切层的厚度和其中的Richardson数(Ri)振荡,通常在低Ri和流动强烈非静水压时减小。恒定剪切层中的临界水平吸收随风速所成角度的增加而增加,它使表面免受反射波的影响,使阻力更接近其静水极限。尽管对于此处考虑的参数范围,阻力很少超过此限制,但是可能会由于困住的回风而产生相当大的阻力分数,特别是在流动强烈非静水,下层较厚且Ri相对较高的情况下。在Ri = O(1)的定向剪切流中,阻力可能会在与剪切相反的方向上与表面风不对齐,这种行为完全归因于非陷波。因此,所捕获的反风阻力,其反作用力在大气中处于较低水平,因此其方向可能与与垂直传播的波在较高水平时作用于大气的阻力明显不同。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号