首页> 外文期刊>Quarterly Journal of the Royal Meteorological Society >High resolution simulation of tropical storm Ivan (2004) in the Southern Appalachians: role of planetary boundary-layer schemes and cumulus parametrization
【24h】

High resolution simulation of tropical storm Ivan (2004) in the Southern Appalachians: role of planetary boundary-layer schemes and cumulus parametrization

机译:南部阿巴拉契亚地区热带风暴Ivan(2004)的高分辨率模拟:行星边界层方案和积云参数化的作用

获取原文
获取原文并翻译 | 示例
           

摘要

The Weather Research and Forecasting (WRF) model was used to simulate the evolution of tropical storm Ivan (2004) in the southeast United States using both the Yonsei University (YSU) and Mellor-Yamada-Janjic (MYJ) boundary-layer parametrizations. In contrast to tropical cyclone (TC) simulations over the ocean, the effect of the surface layer becomes secondary for a dissipating hurricane along its terrestrial track. Although these two schemes can reproduce Ivan reasonably well, our results suggest that the mixing properties for damped mechanical turbulent conditions (weakly stable) are strongly underestimated by both parametrizations. This underestimation impacts the thermodynamic properties of the storm, leading to significant differences in the storm areal extent and the simulated precipitation fields. Suggestions for further improvements are provided. An evaluation of the impact of using or not using a convective parametrization, specifically the Kain-Fritsch (KF) scheme, at 3 km grid spacing shows marginal impact on storm coverage, intensity and precipitation, except for the presence of widespread light rainfall in the Piedmont east of the mountains when the KF is employed. Analysis of the thermal structure of the simulated storm indicates that, in the inner-storm region, the KF is either not activated or primarily produces (parametrized) shallow convection. As a result, the net heating tendency associated with adiabatic and diabatic processes is almost unaltered inside the storm, together with a nearly equivalent surface momentum sink, leading to similar storm areal extent and intensity. Light rainfall to the east of the mountains can be due to the trigger mechanism of KF, which depends on boundary-layer convergence, forcing parametrized deep convection near the coast, where surface roughness changes enhance convergence
机译:气象研究和预报(WRF)模型用于利用延世大学(YSU)和Mellor-Yamada-Janjic(MYJ)边界层参数化来模拟美国东南部热带风暴Ivan(2004)的演变。与海洋上空的热带气旋(TC)模拟相反,地表层的影响对于沿着其陆地轨道散发的飓风来说是次要的。尽管这两种方案都能很好地再现Ivan,但我们的结果表明,两个参数化都严重低估了阻尼机械湍流条件(弱稳定)的混合特性。这种低估会影响风暴的热力学性质,导致风暴面积和模拟降水场的显着差异。提供了进一步改进的建议。在网格间距为3 km的情况下对使用或不使用对流参数化(特别是Kain-Fritsch(KF)方案)的影响的评估显示,对暴风雨覆盖范围,强度和降水的影响很小,除了雇用KF后,在山脉以东的皮埃蒙特。对模拟风暴的热力结构的分析表明,在内部风暴区域,KF未激活或主要产生(参数化的)浅层对流。结果,与绝热和非绝热过程相关的净加热趋势在暴风雨中几乎没有改变,并且几乎具有相等的地表动量汇,导致了类似的暴风雨范围和强度。山区东部的少量降雨可能归因于KF的触发机制,这取决于边界层的收敛,迫使沿海岸附近参数化的深对流活动,其中表面粗糙度的变化会增强收敛

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号