...
首页> 外文期刊>Progress in Histochemistry and Cytochemistry >Cytochemical, biochemical and molecular aspects of the process of keratinization in the epidermis of reptilian scales
【24h】

Cytochemical, biochemical and molecular aspects of the process of keratinization in the epidermis of reptilian scales

机译:爬虫类鳞片表皮角化过程的细胞化学,生物化学和分子方面

获取原文
   

获取外文期刊封面封底 >>

       

摘要

The characteristics of scaled skin of reptiles is one of their main features that distinguish them from the other amniotes, birds and mammals. The different scale patterns observed in extant reptiles result from a long evolutive history that allowed each species to adapt to its specific environment. The present review deals with comparative aspects of epidermal keratinization in reptiles, chelonians (turtles and tortoises), lepidosaurian (lizards, snakes, sphenodontids), archosaurians (crocodilians). Initially the morphology and cytology of reptilian scales is outlined to show the diversity in the epidermis among different groups. The structural proteins (alpha-keratins and associated proteins), and enzymes utilized to form the corneous layer of the epidermis are presented. Aside cytokeratins (alpha-keratins), used for making the cytoskeleton, reptilian alpha-keratinocytes produce interkeratin (matrix) and corneous cell envelope proteins. Keratin bundles and degraded cell organelles constitute most of the corneous material of alpha-keratinocytes. Matrix, histidine-rich and sulfur-rich proteins are produced in the soft epidermis and accumulated in the cornified cell envelope. Main emphasis is given to the composition and to the evolution of the hard keratins (beta-keratins). Beta-keratins constitute the hard corneous material of scales. These small proteins are synthesized in beta-keratinocytes and are accumulated into small packets that rapidly merge into a compact corneous material and form densely cornified layers. Beta-keratins are smaller proteins (8–20 kDa) in comparison to alpha-keratins (40–70 kDa), and this size may determine their dense packing in corneocytes. Both glycine–sulfur-rich and glycine–proline-rich proteins have been so far sequenced in the corneous material of scales in few reptilian species. The latter keratins possess C- and N-amino terminal amino acid regions with sequence homology with those of mammalian hard keratins. Also, reptilian beta-keratins possess a central core with homology with avian scale/feather keratins. Multiple genes code for these proteins and their discovery and sequentiation is presently an active field of research. These initial findings however suggest that ancient reptiles already possessed some common genes that have later diversified to produce the specific keratin-associated proteins in their descendants: extant reptiles, birds and mammals. The evolution of these small proteins in lepidosaurians, chelonians and archosaurians represent the next step to understand the evolution of cornification in reptiles and derived amniotes (birds and mammals).
机译:爬行动物皮肤鳞屑的特征是它们区别于其他羊膜动物,鸟类和哺乳动物的主要特征之一。在现存的爬行动物中观察到的不同尺度模式是由漫长的进化史导致的,这种进化史使每种物种都能够适应其特定的环境。本审查涉及爬行动物,龟(龟和乌龟),鳞龙(蜥蜴,蛇,sphenodontids),始祖龙(鳄鱼)中表皮角质化的比较方面。最初概述了爬虫类鳞片的形态和细胞学,以显示不同组之间表皮的多样性。介绍了结构蛋白(α-角蛋白和相关蛋白)以及用于形成表皮角质层的酶。除了用于制造细胞骨架的细胞角蛋白(α-角蛋白)外,爬虫类的α-角质形成细胞还产生角蛋白(基质)和角质细胞包膜蛋白。角蛋白束和降解的细胞器构成了α-角质形成细胞的大部分角质物质。基质,富含组氨酸和富含硫的蛋白质在软表皮中产生,并积累在角质化的细胞包膜中。主要重点是硬角蛋白(β-角蛋白)的组成和演化。 β-角蛋白构成鳞片的硬角质材料。这些小蛋白质在β-角质形成细胞中合成,并积累成小包,然后迅速融合成紧密的角质物质并形成致密的角质层。与α-角蛋白(40-70 kDa)相比,β-角蛋白是较小的蛋白质(8–20 kDa),这种大小可能决定了它们在角质细胞中的密集堆积。到目前为止,在很少的爬行类物种中,富含甘氨酸和硫的蛋白质以及富含甘氨酸和脯氨酸的蛋白质都已在鳞片的角质材料中进行了测序。后者的角蛋白具有与哺乳动物硬角蛋白的序列同源的C-和N-氨基末端氨基酸区域。此外,爬虫类β-角蛋白具有与禽类/羽毛角蛋白同源的中央核心。多个基因编码这些蛋白质,它们的发现和分离是当前研究的活跃领域。然而,这些最初的发现表明,古老的爬行动物已经拥有一些共同的基因,这些基因后来多样化以在其后代中产生特定的与角蛋白相关的蛋白质:现存的爬行动物,鸟类和哺乳动物。这些小蛋白质在鳞翅类,龟类和始祖类中的进化代表了下一步了解爬行动物和衍生的羊膜动物(鸟类和哺乳动物)中的角质化进化的步骤。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号