...
首页> 外文期刊>Progress in Biophysics and Molecular Biology: An International Review Journal >Coupling biomechanics to a cellular level model: An approach to patient-specific image driven multi-scale and multi-physics tumor simulation
【24h】

Coupling biomechanics to a cellular level model: An approach to patient-specific image driven multi-scale and multi-physics tumor simulation

机译:将生物力学耦合到细胞水平模型:一种针对患者的图像驱动多尺度和多物理场肿瘤模拟的方法

获取原文
获取原文并翻译 | 示例

摘要

Modeling of tumor growth has been performed according to various approaches addressing different biocomplexity levels and spatiotemporal scales. Mathematical treatments range from partial differential equation based diffusion models to rule-based cellular level simulators, aiming at both improving our quantitative understanding of the underlying biological processes and, in the mid- and long term, constructing reliable multi-scale predictive platforms to support patient-individualized treatment planning and optimization. The aim of this paper is to establish a multi-scale and multi-physics approach to tumor modeling taking into account both the cellular and the macroscopic mechanical level. Therefore, an already developed biomodel of clinical tumor growth and response to treatment is self-consistently coupled with a biomechanical model. Results are presented for the free growth case of the imageable component of an initially point-like glioblastoma multiforme tumor. The composite model leads to significant tumor shape corrections that are achieved through the utilization of environmental pressure information and the application of biomechanical principles. Using the ratio of smallest to largest moment of inertia of the tumor material to quantify the effect of our coupled approach, we have found a tumor shape correction of 20% by coupling biomechanics to the cellular simulator as compared to a cellular simulation without preferred growth directions. We conclude that the integration of the two models provides additional morphological insight into realistic tumor growth behavior. Therefore, it might be used for the development of an advanced oncosimulator focusing on tumor types for which morphology plays an important role in surgical and/or radio-therapeutic treatment planning
机译:已经根据解决不同生物复杂度水平和时空尺度的各种方法进行了肿瘤生长的建模。数学处理的范围从基于偏微分方程的扩散模型到基于规则的细胞水平模拟器,旨在提高我们对潜在生物学过程的定量理解,并在中长期内构建可靠的多尺度预测平台以支持患者个性化的治疗计划和优化。本文的目的是在考虑细胞和宏观力学水平的基础上建立一种多尺度,多物理场的肿瘤建模方法。因此,已经开发的临床肿瘤生长和对治疗反应的生物模型与生物力学模型自洽地结合在一起。给出了最初点状胶质母细胞瘤多形肿瘤可成像成分的自由生长情况的结果。通过使用环境压力信息和应用生物力学原理,复合模型可导致显着的肿瘤形状校正。使用肿瘤材料的最小惯性矩与最大惯性矩之比来量化我们耦合方法的效果,与没有首选生长方向的细胞模拟相比,通过将生物力学耦合到细胞模拟器,我们发现了20%的肿瘤形状校正。我们得出的结论是,两个模型的集成为现实的肿瘤生长行为提供了额外的形态学见解。因此,它可用于开发先进的肿瘤模拟仪,其重点是肿瘤类型,在治疗和/或放射治疗计划中,形态学起着重要作用

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号