首页> 外文期刊>Proteins: Structure, Function, and Genetics >Computationally-predicted CB1 cannabinoid receptor mutants show distinct patterns of salt-bridges that correlate with their level of constitutive activity reflected in G protein coupling levels, thermal stability, and ligand binding
【24h】

Computationally-predicted CB1 cannabinoid receptor mutants show distinct patterns of salt-bridges that correlate with their level of constitutive activity reflected in G protein coupling levels, thermal stability, and ligand binding

机译:通过计算预测的CB1大麻素受体突变体显示出不同的盐桥模式,这些桥与其在G蛋白偶联水平,热稳定性和配体结合中反映出的本构活性水平相关

获取原文
获取原文并翻译 | 示例
           

摘要

The cannabinoid receptor 1 (CB1), a member of the class A G-protein-coupled receptor (GPCR) family, possesses an observable level of constitutive activity. Its activation mechanism, however, has yet to be elucidated. Previously we discovered dramatic changes in CB1 activity due to single mutations; T3.46A, which made the receptor inactive, and T3.46I and L3.43A, which made it essentially fully constitutively active. Our subsequent prediction of the structures of these mutant receptors indicated that these changes in activity are explained in terms of the pattern of salt-bridges in the receptor region involving transmembrane domains 2, 3, 5, and 6. Here we identified key salt-bridges, R2.37 + D6.30 and D2.63 + K3.28, critical for CB1 inactive and active states, respectively, and generated new mutant receptors that we predicted would change CB1 activity by either precluding or promoting these interactions. We find that breaking the R2.37 + D6.30 salt-bridge resulted in substantial increase in G-protein coupling activity and reduced thermal stability relative to the wild-type reflecting the changes in constitutive activity from inactive to active. In contrast, breaking the D2.63 + K3.28 salt-bridge produced the opposite profile suggesting this interaction is critical for the receptor activation. Thus, we demonstrate an excellent correlation with the predicted pattern of key salt-bridges and experimental levels of activity and conformational flexibility. These results are also consistent with the extended ternary complex model with respect to shifts in agonist and inverse agonist affinity and provide a powerful framework for understanding the molecular basis for the multiple stages of CB1 activation and that of other GPCRs in general.
机译:大麻素受体1(CB1)是A类G蛋白偶联受体(GPCR)家族的成员,具有可观察到的组成活性水平。但是,其激活机制尚未阐明。以前,我们发现由于单个突变导致CB1活性发生了巨大变化。使受体失活的T3.46A,以及使受体基本上完全组成性活化的T3.46I和L3.43A。我们对这些突变受体结构的后续预测表明,这些活性的变化是根据涉及跨膜结构域2、3、5和6的受体区域中盐桥的模式来解释的。在这里,我们确定了关键的盐桥R2.37 + D6.30和D2.63 + K3.28,分别对CB1无效和活跃状态至关重要,并产生了我们预测会通过阻止或促进这些相互作用而改变CB1活性的新突变受体。我们发现打破R2.37 + D6.30盐桥导致G蛋白偶联活性大大增加,相对于野生型降低了热稳定性,反映了从非活性到活性的本构活性的变化。相反,破坏D2.63 + K3.28盐桥则产生相反的图谱,表明这种相互作用对于受体激活至关重要。因此,我们证明了与关键盐桥的预测模式以及活性和构象柔性的实验水平之间的极好的相关性。这些结果也与扩展的三元复杂模型在激动剂和反向激动剂亲和力方面的变化一致,并为理解CB1激活和其他GPCR激活的多个阶段的分子基础提供了强大的框架。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号